Skip to main content

Calcified Tissues: Cellular Dynamics

  • Chapter
Calcium in Human Biology

Part of the book series: ILSI Human Nutrition Reviews ((ILSI HUMAN))

Abstract

Bone is a living tissue with properties of growth and renewal like most other types of tissue in the human organism. It has multiple functions among which support, weight-bearing and participation in calcium homeostasis are the most important. To understand these properties a certain knowledge of primary bone formation, postnatal growth (modelling) and the continuous renewal of adult bone throughout life (remodelling) (Frost 1969) is necessary. This Chapter deals with these subjects and with certain disorders involving bone tissue which may compromise its biomechanical and/or calcium homeostatic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Charles P, Poser JW, Mosekilde L, Jensen FT (1985) Estimation of bone turnover evaluated by 47Ca kinetics: efficiency of serum bone gamma-carboxyglutamic acid-containing protein, serum alkaline phosphatase, and urinary hydroxyproline excretion. J Clin Invest 76:2254–2258

    Article  PubMed  CAS  Google Scholar 

  • Charles P, Mosekilde L, Jensen FT (1986) Primary hyperparathyroidism: evaluated by 47Ca kinetics, calcium balance and serum bone Gla-protein. Eur J Clin Invest 16:277–283

    Article  PubMed  CAS  Google Scholar 

  • Eriksen EF (1986) Normal and pathological remodeling of human trabecular bone: three-dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. Endocr Rev 7:379–408

    Article  PubMed  CAS  Google Scholar 

  • Eriksen EF, Gundersen HJG, Meisen F, Mosekilde L (1984a) Reconstruction of the formative site in iliac trabecular bone in 20 normal individuals employing a kinetic model for matrix and mineral apposition. Metab Bone Dis Rel Res 5:243–252

    Article  CAS  Google Scholar 

  • Eriksen EF, Meisen F, Mosekilde L (1984b) Reconstruction of the resorptive site in iliac trabecular bone: a kinetic model for bone resorption in 20 normal individuals. Metab Bone Dis Rel Res 5:235–242

    Article  CAS  Google Scholar 

  • Eriksen EF, Mosekilde L, Meisen F (1985) Trabecular bone remodeling and bone balance in hyperthyroidism. Bone 6:421–428

    Article  PubMed  CAS  Google Scholar 

  • Eriksen EF, Mosekilde L, Meisen F (1986a) Kinetics of trabecular bone resorption and formation in hypothyroidism: evidence for a positive balance per remodeling cycle. Bone 7:101–108

    Article  PubMed  CAS  Google Scholar 

  • Eriksen EF, Mosekilde L, Meisen F (1986b) Trabecular bone remodeling and balance in primary hyperparathyroidism. Bone 7:213–222

    Article  PubMed  CAS  Google Scholar 

  • Frost HM (1969) Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res 3:211–237

    Article  PubMed  CAS  Google Scholar 

  • Garn SM, Rohmann CG, Wagner B, Ascoli W (1967) Continuing bone growth throughout life: a general phenomenon. Am J Phys Anthropol 26:313–317

    Article  PubMed  CAS  Google Scholar 

  • Jaworsky ZF (1971) Some morphologic and dynamic aspects of remodelling on the endostealcortical and trabecular surfaces. In: Menczel J, Harell A (eds) Calcified tissue: structural, functional and metabolic aspects. Academic Press, New York, pp 159–160

    Google Scholar 

  • Kragstrup J, Gundersen HJG, Meisen F, Mosekilde L (1982) Estimation of the three-dimensional wall thickness of completed remodeling sites in iliac trabecular bone. Metab Bone Dis Rel Res 4:113–119

    Article  CAS  Google Scholar 

  • Meisen F, Mosekilde L (1977) Morphometric and dynamic studies of bone changes in hyperthyroidism. Acta Pathol Microbiol Scand [A] 85:141–150

    Google Scholar 

  • Meisen F, Mosekilde L (1981) The role of bone biopsy in metabolic bone disease. Orthop Clin North Am 12:571–602

    Google Scholar 

  • Meisen F, Nielsen HE (1977) Osteonecrosis following renal allotransplantation. Acta Pathol Microbiol Scand [A] 85:99–104

    Google Scholar 

  • Mosekilde L, Christensen MS (1977) Decreased parathyroid function in hyperthyroidism: interrelationships between serum parathyroid hormone, calcium-phosphorus metabolism and thyroid function. Acta Endocrinol 84:566–575

    PubMed  CAS  Google Scholar 

  • Mosekilde L, Meisen F (1978a) Morphometric and dynamic studies of bone changes in hypothyroidism. Acta Pathol Microbiol Scand [A] 86:56–62

    CAS  Google Scholar 

  • Mosekilde L, Meisen F (1978b) A tetracycline based histomorphometric evaluation of bone resorption and bone turnover in hyperthyroidism and hyperparathyroidism. Acta Med Scand 204:97–102

    Article  PubMed  CAS  Google Scholar 

  • Mosekilde L, Mosekilde L (1986) Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength. Bone 7:207–212

    Article  PubMed  CAS  Google Scholar 

  • Nielsen HE, Meisen F, Christensen MS (1980) Interrelationships between calcium-phosphorus metabolism, serum parathyroid hormone and bone histomorphometry in non-dialyzed and dialyzed patients with chronic renal failure. Mineral Electrolyte Metab 4:113–122

    Google Scholar 

  • Nilsson P, Meisen F, Malmaeus J, Danielson BG, Mosekilde L (1985) Relationships between calcium and phosphorus homeostasis, parathyroid hormone levels, bone aluminium, and bone histomorphometry in patients on maintenance hemodialysis. Bone 6:21–27

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM (1976) The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. 2. PTH and osteoblasts, the relationship between bone turnover and bone loss, and the state of bone in primary hyperparathyroidism. Metabolism 25:1033–1087

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM (1982) The coupling of bone formation and bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Rel Res 4:1–6

    Article  CAS  Google Scholar 

  • Parfitt AM (1984) Age related structural changes in trabecular and cortical bone. Cellular mechanisms and biomechanical consequences. Calcif Tissue Int 36:123–128

    Article  Google Scholar 

  • Talmage RV (1969) Calcium homeostasis-calcium transport and parathyroid action: the effects of parathyroid hormone on the movement of calcium between bone and fluid. Clin Orthop 67:210–224

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melsen, F., Mosekilde, L. (1988). Calcified Tissues: Cellular Dynamics. In: Nordin, B.E.C. (eds) Calcium in Human Biology. ILSI Human Nutrition Reviews. Springer, London. https://doi.org/10.1007/978-1-4471-1437-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1437-6_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1439-0

  • Online ISBN: 978-1-4471-1437-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics