Skip to main content

A Problem-Solving Environment Based on Cellular Automata

  • Conference paper
Cellular Automata: Research Towards Industry
  • 117 Accesses

Abstract

In this paper we present a novel application to the cellular automata implementation of the diffusion-limited aggregation (DLA) model. This model, mainly used in Physics, Physical Chemistry, and Biology in the simulation of fractal growth phenomena is applied in the present work to the development of a heuristic problem-solving methodology. The method is applied in the solution of a hard combinatorial optimization problem, the Euclidean Traveling Salesman Problem. Experimental tests, carried out over a standard set of problem instances, show that the method outperforms, considering the quality of the produced solutions, another heuristic based on the real space renormalization theory. It is also found that it compares favourably (considering the computation time) with two other methods based on physical processes: The elastic net and simulated annealing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Witten T.A. and Sander L.M. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon, Phys. Rev. Lett. 1981; 47: 1400

    Article  Google Scholar 

  2. Witten T.A. and Sander L.M. Diffusion-Limited Aggregation, Phys. Rev. 1983; B 27: 5686

    Article  MathSciNet  Google Scholar 

  3. Sander L.M. Fractal Growth Processes, Nature 1986; 322: 789

    Article  Google Scholar 

  4. Toffoli T. and Margolus N. Cellular Automata Machines: A New Environment for Modeling, The MIT Press Cambridge, 1987.

    Google Scholar 

  5. Stauffer D. Computer Simulations of Cellular Automata, J. Phys. 1991; A 24: 909

    MathSciNet  MATH  Google Scholar 

  6. Vicsek T. Fractal Growth Phenomena, World Scientific Publishing, 1989.

    Google Scholar 

  7. Niemeyer L., Pietronero L., and Wiesmann H.J. Fractal Dimension of Dielectric Breakdown, Phys. Rev. Lett. 1984; 52: 1033

    Article  MathSciNet  Google Scholar 

  8. Fogedby H.C., Sorensen E.S., and Mouritsen O.G. Fractal Growth in Impurity Controlled Solidification, J. Chem. Phys. 1987; 87: 6706

    Article  Google Scholar 

  9. Fogedby H.C. Modelling Fractal Growth of Bacillus Subtilis on Agar Plates, J. Phys. Soc. (Japan) 1991; 60: 704

    Article  Google Scholar 

  10. Garey M.R. and Johnson D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York, 1979.

    Google Scholar 

  11. Miller D.L. and Pekny J.F. Exact Solution of Large Asymmetric Traveling Salesman Problems, Science 1991; 251: 754

    Article  Google Scholar 

  12. Lin S. and Kernighan B.W., An Effective Heuristic Algorithm for the Traveling Salesman Problem, Oper. Res. 1973; 21: 498

    MathSciNet  MATH  Google Scholar 

  13. Durbin R. and Willshaw D. An Analogue Approach to the Travelling Salesman Problem Using an Elastic Net Method, Nature 1987; 326: 689

    Article  Google Scholar 

  14. Telfar G., Generally Applicable Heuristics for Global Optimisation: An Investigation of Algorithm Performance for the Euclidean Traveling Salesman Problem, M.Sc. Thesis, Victoria University of Wellington, New Zealand, October 1994.

    Google Scholar 

  15. Kirkpatrick S., Gelatt C.D. Jr., and Vecchi M.P. Optimization by Simulated Annealing, Science 1983; 220: 671

    Article  MathSciNet  Google Scholar 

  16. Goldberg D.E. Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, Massachusetts, 1989.

    Google Scholar 

  17. Zbigniew M. Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag New York, 1994.

    Google Scholar 

  18. Yoshiyuki U. and Yoshiki K. New Method of Solving the Traveling Salesman Problem Based on Real Space Renormalisation Theory, Phys. Rev. Lett. 1995; 75: 1683

    Article  Google Scholar 

  19. Norman M.G. and Moscato P. The Euclidean Traveling Salesman Problem and a Space-Filling Curve, Chaos, Solitons, and Fractals 1995; 6: 389

    Article  MATH  Google Scholar 

  20. Whitley D., Starkweather T. and Fuquay D’A. Scheduling Problems and Traveling Salesman: The Genetic Edge Recombination Operator. In Proc. of the Third International Conference on Genetic Algorithms. Schaffer J.D. ed. Morgan Kauffmann Publishers. Los Altos. CA, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this paper

Cite this paper

Moreno, J.A., Santos, J.G. (1998). A Problem-Solving Environment Based on Cellular Automata. In: Bandini, S., Serra, R., Liverani, F.S. (eds) Cellular Automata: Research Towards Industry. Springer, London. https://doi.org/10.1007/978-1-4471-1281-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1281-5_24

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-048-4

  • Online ISBN: 978-1-4471-1281-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics