Advertisement

Competition, Interaction and Control

  • I. D. Landau

Summary

1 Automatic Control is a technical discipline which has extremely varied fields of application but is only visible through the field of application where it is used. Control competes with other disciplines as provider of an efficient new technology. Interaction with other technologies is necessary in practical situations.

Competition and interaction occur inside the control discipline as well. Interaction between various control techniques is not only necessary but it is also very beneficial for the development of the discipline itself.

The paper will illustrate these aspects via a few practical examples and research developments.

Keywords

Closed Loop Plant Model Open Loop Sensitivity Function Pole Placement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adaptech. WimPIM+(includes, WinPIM, WinREG and WinTRAC) System Identification and Control Software. User’s manual. 4, rue du tour de l’eau, 38400 St. Martin-d’Hères, France, 1996.Google Scholar
  2. 2.
    B.D.O. Anderson and R.L. Kosut. Adaptive robust control: on-line learning. In Proc. 30th IEEE-CDC, Brighton, UK, 1991.Google Scholar
  3. 3.
    K.J. Aström. Matching criteria for control and identification. In Proc. European Control Conference, Groningen, The Netherlands, 1993.Google Scholar
  4. 4.
    R.R. Bitmead. Iterative control design approaches. In Prepr. 12th IFAC World Congress, volume 9, pages 381–384, Sydney, Australia, 1993.Google Scholar
  5. 5.
    J.C. Doyle, B.A. Francis, and A.R. Tannenbaum. Feedback Control Theory. Mac Milan, N.Y., 1992.Google Scholar
  6. 6.
    M. Gevers. Towards a joint design of identification and control? In Essays on Control: Perspectives in the Theory and its Applications, pages 111–152. Birkhäuser, Boston, U.S.A., 1993.Google Scholar
  7. 7.
    M. Gevers. Identification for control. In Prepr. IFAC Symposium ACASP 95, Budapest, Hungary, June 1995.Google Scholar
  8. 8.
    G.C. Goodwin and K.S. Sin. Adaptive Filtering Prediction and Control. Prentice Hall, N. J., 1984.MATHGoogle Scholar
  9. 9.
    H. Hjalmarsson, M. Gevers, and F. De Bruyne. For model-based control design, closed loop identification gives better performance. Automatica,32(12):16591673, 1996.Google Scholar
  10. 10.
    A. Karimi and I.D. Landau. Comparison of the closed loop identification methods in terms of the bias distribution. Technical report, LAG, January 1997. To appear in Systems and Control Letters, 1998.Google Scholar
  11. 11.
    I.D. Landau. System identification and control design. Prentice Hall, Englewood Cliffs, N.J., USA, 1990.Google Scholar
  12. 12.
    I.D. Landau. Robust digital control of systems with time delay. Int..1. of Control, 62 (2): 325–347, 1995.MATHCrossRefGoogle Scholar
  13. 13.
    I.D. Landau and A. Karimi. Recursive algorithms for identification in closed loop - a unified approach and evaluation. In Proc. 36 IEEE CDC, Kobe, Japan (extended version: to appear in Automatica 1997 ), December 1996.Google Scholar
  14. 14.
    I.D. Landau and A. Karimi. An output error recursive algorithm for unbiased identification in closed loop. Automatica, 33 (4), 1997.Google Scholar
  15. 15.
    I.D. Landau, M. M’Saad and R. Lozano. Adaptive Control Springer Verlag, London, 1997.Google Scholar
  16. 16.
    I.D. Landau, A. Karimi, A. Voda-Besançon, and D. Rey. Robust digital control of flexible transmissions using the combined pole placement/sensitivity function shaping method. European Journal of Control, 1 (2): 122–133, 1995.Google Scholar
  17. 17.
    I.D. Landau, J. Langer, D. Rey, and J. Barnier. Robust control of a 360° flexible arm using the combined pole/placement sensitivity function shaping method. IEEE T-CST, 4 (4): 369–383, 1996.Google Scholar
  18. 18.
    J. Langer and I.D. Landau. Improvement of robust digital control by identification in closed loop, application to a 360° flexible arm. Control Eng. Practice, 4 (8): 1079–1088, 1996.CrossRefGoogle Scholar
  19. 19.
    J. Langer and I.D. Landau. Combined pole placement/sensitivity function shaping method using convex optimization criteria. In Proc. ECC 97, Bruxelles, Belgium, July 1997.Google Scholar
  20. 20.
    S. Lee, B.D.O. Anderson, R.L. Kosut, and I.M.Y. Mareels. A new approach to adaptive robust control. Int. J. ACASP, 7: 183–211, 1993.MATHGoogle Scholar
  21. 21.
    L. Ljung. System Identification: Theory for the User. Prentice-Hall, Englewood Cliffs, N.J.,USA, 1987.Google Scholar
  22. 22.
    L. Ljung. Information contents in identification data from closed-loop operation. In Proc. 32th IEEE-CDC, San Antonio, Texas, USA, December 1993.Google Scholar
  23. 23.
    R. Lozano and X.H. Zhao. Adaptive pole placement without excitation probing signals. IEEE Tran.Automatic Control, 39 (1): 47–58, 1994.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    A.G.J. Mac Farlane. Information knowledge and control in essays on control. In Essays on Control: Perspectives in the Theory and its Applications, pages 1–28. Birkhäuser, Boston, U.S.A., 1993.Google Scholar
  25. 25.
    R. Ortega and Y. Tang. Robustness of adaptive controllers–a survey. Automatica, 25 (5): 651–677, 1989.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    C. Péchoux and Y. Bourande. Régulation active du rapport air/gaz d’un brûleur. In 113ème Congrès du Gaz, Paris, France, September 1996.Google Scholar
  27. 27.
    R.J.P. Schrama. Accurate models for control design: the necessity of an iterative scheme. IEEE T-AC, 37: 991–994, 1992.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    T. Söderström and P. Stoica. System Identification. Prentice-Hall, U.K., 1989.MATHGoogle Scholar
  29. 29.
    P. van den Hof and R. Schrama. An indirect method for transfer function estimation from closed loop data. Automatica, 29 (6), December 1993.Google Scholar
  30. 30.
    P. van den Hof and R. Schrama. Identification and control — closed-loop issues. Automatica, 31 (12), 1995.Google Scholar
  31. 31.
    A. Voda-Besançon and I.D. Landau. An iterative method for the auto-calibration of the digital controllers. application. In Proc. ECC95, Rome, Italy, 1995.Google Scholar
  32. 32.
    Z. Zang, R.R. Bitmead, and M. Gevers. Iterative weighted model refinement and control robustness enhancement. In Proc. 30th IEEE-CDC, Brighton, UK, 1991.Google Scholar
  33. 33.
    Z. Zang, R.R. Bitmead, and M. Gevers. Iterative weighted least-squares identification and weighted lqg control design. Automatica, 31 (11), 1995.Google Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • I. D. Landau
    • 1
  1. 1.Laboratoire d’Automatique de GrenobleENSIEG (CNRS/INPG/UJF)Saint Martin D’HèresFrance

Personalised recommendations