Skip to main content

A Multiple-Hypothesis Approach to Concurrent Mapping and Localization for Autonomous Underwater Vehicles

  • Conference paper
Field and Service Robotics

Abstract

This paper describes a multiple hypothesis approach to concurrent mapping and localization (CML) for autonomous underwater vehicles (AUVs). The objective of CML is to enable a mobile robot to build a map of an unknown environment, while simultaneously using that map to navigate with bounded position error. Multiple hypothesis concurrent mapping and localization (MHCML) has potential to provide a theoretically consistent framework that incorporates navigation error, sensor noise, data association uncertainty, and physically-based sensor models. MHCML is fundamentally different from conventional multiple hypothesis tracking because multiple hypotheses are considered for both the location of the vehicle and the locations of features. New techniques for evaluation of decision dependencies and calculation of likelihoods for vehicle and feature tracks are introduced. Simulation results are presented to illustrate the viability of the approach for an AUV equipped with a forward-look sonar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association. Academic Press, 1988.

    MATH  Google Scholar 

  2. J. G. Bellingham, C. Chryssostomidis, M. Deffenbaugh, J. J. Leonard, and H. Schmidt. Arctic under-ice survey operations. In Proc. Int. Symp. on Unmanned Untethered Submersible Technology, pages 50–59, 1993.

    Google Scholar 

  3. K. Chang, S. Mori, and C. Chong. Performance evaluation of a multiple hypothesis multitarget tracking algorithm. In IEEE Int. Conference on Decision and Control (CDC), pages 2258–2263, 1990.

    Google Scholar 

  4. K. S. Chong and L. Kleeman. Sonar feature map building for a mobile robot. In Proc. IEEE Int. Conf. Robotics and Automation, 1997.

    Google Scholar 

  5. I. J. Cox and J. J. Leonard. Modeling a dynamic environment using a Bayesian multiple hypothesis approach. Artificial Intelligence, 66(2):311–344, April 1994.

    Article  MATH  Google Scholar 

  6. I. J. Cox and M. L. Miller. On finding ranked assignments with application to multi-target tracking and motion correspondence. Technical report, NEC Research Institute, July 1993.

    Google Scholar 

  7. A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal of Robotics and Automation, RA-3(3):249–265, June 1987.

    Article  Google Scholar 

  8. E. Geyer, P. Creamer, J. D’Appolito, and R. Gains. Characteristics and capabilities of navigation systems for unmanned untethered submersibles. In Proc. Int. Symp. on Unmanned Untethered Submersible Technology, pages 320–347, 1987.

    Chapter  Google Scholar 

  9. T. Kurien. Issues in the design of practical multitarget tracking algorithms. In Y. Bar-Shalom, editor, Multitarget-Multisensor Tracking: Advanced Applications, pages 43–83. Boston: Artech House, 1990.

    Google Scholar 

  10. J. J. Leonard and H. F. Durrant-Whyte. Simultaneous map building and localization for an autonomous mobile robot. In Proc. IEEE Int. Workshop on Intelligent Robots and Systems, Osaka, Japan, 1991.

    Google Scholar 

  11. E. Levine, D. Connors, R. Shell, T. Gagliardi, and R. Hanson. Oceanographic mapping with the Navy’s large diameter UUV. Sea Technology, pages 49–57, 1995.

    Google Scholar 

  12. M. Medeiros and R. Carpenter. High resolution array signal processing for AUVs. In AUV 96, pages 10–15, 1996.

    Google Scholar 

  13. H. Moravec. Sensor fusion in certainty grids for mobile robots. In Sensor Devices and Systems for Robotics, pages 253–276. Springer-Verlag, 1989. Nato ASI Series.

    Google Scholar 

  14. S. Mori, C. Chong, E. Tse, and R. Wishner. Tracking and classifying multiple targets without a priori identification. IEEE Transactions on Automatic Control, AC-31(5), May 1986.

    Google Scholar 

  15. P. Moutarlier and R. Chatila. Stochastic multisensory data fusion for mobile robot location and environment modeling. In 5th Int. Symposium on Robotics Research, Tokyo, 1989.

    Google Scholar 

  16. F. Nussbaum, G. Stevens, and J. Kelly. Sensors for a forward-looking high resolution auv sonar. In AUV 96, pages 141–145, 1996.

    Google Scholar 

  17. D. B. Reid. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, AC- 24(6), December 1979.

    Google Scholar 

  18. W. D. Rencken. Concurrent localisation and map building for mobile robots using ultrasonic sensors. In Proc. IEEE Int. Workshop on Intelligent Robots and Systems, pages 2192–2197, Yokohama, Japan, 1993.

    Google Scholar 

  19. H. Schmidt, J. Bellingham, M. Johnson, D. Herold, D. Farmer, and R. Pawlowcisz. Real-time frontal mapping with AUVs in a coastal environment. In IEEE Oceans, pages 1094–1098, 1996.

    Google Scholar 

  20. R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in robotics. In I. Cox and G. Wilfong, editors, Autonomous Robot Vehicles. Springer-Verlag, 1990.

    Google Scholar 

  21. C. S. Smith, J. J. Leonard, A. A. Bennett, and C. Shaw. Concurrent mapping and localization for autonomous underwater vehicles. In Undersea Defence Technology, pages 338–342, 1997.

    Google Scholar 

  22. C. S. Smith, J. J. Leonard, A. A. Bennett, and C. Shaw. Feature-based concurrent mapping and localization for autonomous underwater vehicles. In IEEE Oceans, 1997.

    Google Scholar 

  23. W. K. Stewart. Multisensor Modeling Underwater with Uncertain Information. PhD thesis, Massachusetts Institute of Technology, 1988.

    Google Scholar 

  24. S. T. Tuohy, J. J. Leonard, J. G. Bellingham, N. M. Patrikalakis, and C. Chryssostomidis. Map based navigation for autonomous underwater vehicles. International Journal of Offshore and Polar Engineering, 6(1):9–18, March 1996.

    Google Scholar 

  25. J. Uhlmann. Dynamic Map Building and Localization: New Theoretical Foundations. PhD thesis, University of Oxford, 1995.

    Google Scholar 

  26. J. Vaganay, J. G. Bellingham, and J. J. Leonard. Outlier rejection for autonomous acoustic navigation. In Proc. IEEE Int. Conf. Robotics and Automation, pages 2174–2181, April 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this paper

Cite this paper

Smith, C.M., Leonard, J.J. (1998). A Multiple-Hypothesis Approach to Concurrent Mapping and Localization for Autonomous Underwater Vehicles. In: Zelinsky, A. (eds) Field and Service Robotics. Springer, London. https://doi.org/10.1007/978-1-4471-1273-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1273-0_37

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1275-4

  • Online ISBN: 978-1-4471-1273-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics