Skip to main content

Magnetic Resonance Imaging: Current Status and Strategies for Improving Multiple Sclerosis Clinical Trial Design

  • Chapter
Multiple Sclerosis

Abstract

Magnetic resonance (MR) has clearly evolved into the primary modality for the paraclinical evaluation of patients with multiple sclerosis (MS). The value of MR in controlled clinical trials and studies of natural history lies in its ability to detect sensitively the extent and evolution of lesion burden in the central nervous system. It has been demonstrated that MR is more sensitive than the clinical examination in both the detection and extent of progression of cerebral disease (Baum et al. 1990; Grossman et al. 1986; Isaac et al. 1988). In one study, subclinical evolution of lesions was observed by MR in 56% of clinically stable patients (Truyen et al. 1991). Investigators have reported a disparity between degree of disability and lesion burden (Huber et al. 1988; Mauch et al. 1988). One reason for this disparity is that clinical disability measurements are difficult to quantitate and inaccurately reflect disease burden (Noseworthy et al. 1990). This has contributed to the widespread acceptance of MR as a surrogate marker of therapeutic efficacy in clinical trials (IFNB Multiple Sclerosis Study Group 1993). McDonald et al. have suggested that MR is presently positioned to: screen putative therapies and determine which modify the evolution of disease; and serve as a supplementary marker of disease activity in Phase III studies in which disability is the primary outcome measure (McDonald et al. 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen I and McKeown S (1979) A histological histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 41: 81–91

    Article  PubMed  CAS  Google Scholar 

  • Armspach J P, Gounot D, Rumbach L et al. (1991) In vivo determination of multiexponential T2 relaxation in the brain of patients with multiple sderosis. Magn Reson Imaging 9: 107–113

    Article  PubMed  CAS  Google Scholar 

  • Armspach JP, Gounot D, Namer IJ et al. (1993) Quantitative cerebral magnetic resonance imaging during ACTH treatment of multiple sclerosis. Magn Reson Imaging, 11: 1147–1153

    Article  PubMed  CAS  Google Scholar 

  • Arnold DL, Matthews PM, Francis G et al. (1990) Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med 14: 154–159

    Article  PubMed  CAS  Google Scholar 

  • Arnold DL, Riess GT, Matthews PM et al. (1994) Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Ann Neurol 36: 76–82

    Article  PubMed  CAS  Google Scholar 

  • Barbosa S, Blumhardt LD, Roberts N et al. (1994) Magnetic resonance relaxation time mapping in multiple sclerosis: normal appearing white matter and the invisible lesion load. Magn Reson Imaging 12: 33–42

    Article  PubMed  CAS  Google Scholar 

  • Barkhof F, Hommes OR, Scheltens P et al. (1991) Quantitative MRI changes in gadolinium-DTPA enhancement after high-dose intravenous methylprednisolone in multiple sclerosis. Neurology 41: 1219–1222

    PubMed  CAS  Google Scholar 

  • Baum K, Nehrig C, Schomer W et al. (1990) Long-term follow-up of MS: disease activity detected clinically and by MRI. Acta Neurol Scand 82: 191–196

    Article  PubMed  CAS  Google Scholar 

  • Bottomley PA, Hardy CJ, Argersinger RE et al. (1987) A review of 1H nuclear magnetic resonance in pathology: are T1 and T2 diagnostic Med Phys 14: 425–448

    Article  Google Scholar 

  • Bradley WG, Glenn BJ (1987) The effect of variation in slice thickness and interstice gap on MR lesion detection. AJNR Am J Neuroradiol 8: 1057–1062

    PubMed  CAS  Google Scholar 

  • Brainin M, Reisner T, Neuhold A et al. (1989) Involvement of apparently normal white brain substance in the disease process of multiple sclerosis [Ger]. Nervenarzt 60: 159–162

    PubMed  CAS  Google Scholar 

  • Breger R, Wehrli F, Charles H et al. (1986) Reproducibility of relaxation and spin-density parameters in phantoms and the human brain measured by MR imaging at 1.5 T. Magn Reson Med 3: 649–662

    Article  PubMed  CAS  Google Scholar 

  • Capra R, Marciano N, Vignolo L A et al. (1992) Gadolinium-pentetic acid magnetic resonance imaging in patients with relapsing remitting multiple sclerosis. Arch Neurol 49: 687–689

    PubMed  CAS  Google Scholar 

  • Chung H-W, Wehrli F, Williams J et al. (1995) Quantitative analysis of trabecular microstructure by 400 Mhz nuclear magnetic resonance imaging. J Bone Miner Res 10: 803–811

    Article  PubMed  CAS  Google Scholar 

  • Cline HE, Lorensen WE, Kikinis R et al. (1990) Three-dimensional segmentation of MR images of the head using probability and connectivity. J Comput Assist Tomogr 14: 1037–1045

    Article  PubMed  CAS  Google Scholar 

  • Compston A (1988) Methylprednisolone and multiple sclerosis. Arch Neurol 45:669–670 Constable R, Gore J (1992) The loss of small objects in variable TE imaging: implications for FSE, RARE, and EPI. Mag Reson Med 28: 9–24

    Google Scholar 

  • Crawley A, Henkelman R (1987) Errors in T2 estimation using multislice multiple-echo imaging. Magn Reson Med 4: 34–47

    Article  PubMed  CAS  Google Scholar 

  • De Coene B, Hajnal JV, Gatehouse P et al. (1992) MR of the brain using fluid-attenuated inversion recovery ( FLAIR) pulse sequences. AJNR Am J Neuroradiol 13: 1555–1564

    PubMed  Google Scholar 

  • De Coene B, Hajnal JV, Pennock JM et al. (1993) MM of the brain stem using fluid attenuated inversion recovery pulse sequences. Neuroradiology 35: 327–331

    Article  PubMed  Google Scholar 

  • Dousset V, Grossman RI, Ramer KN et al. (1992) Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging [published erratum appears in Radiology 1992;183:878]. Radiology 182: 483–491

    PubMed  CAS  Google Scholar 

  • Edzes HT, Samulski ET (1977) Cross relaxation and spin diffusion in the proton NMR of hydrated collagen. Nature 265: 521–523

    Article  PubMed  CAS  Google Scholar 

  • Edzes HT, Samulski ET (1978) The measurement of cross-relaxation effects in the proton NMR spin-lattice relaxation of water in biological systems: hydrated collagen and muscle. J Magn Reson 31: 207–229

    CAS  Google Scholar 

  • Elster A, King J, Matthews V et al. (1994) Cranial tissues: appearance at gadolinium-enhanced and nonenhanced MR imaging with magnetization transfer contrast. Radiology 190: 541–546

    PubMed  CAS  Google Scholar 

  • Filippi M, Horsfield MA, Morrissey S P et al. (1994) Quantitative brain MRI lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis. Neurology 44: 635–641

    PubMed  CAS  Google Scholar 

  • Finelli D, Hurst GC, Gullapali RP, Bellon EM (1994) Improved contrast of enhancing brain lesions on postgadolinium, Tl-weighted spin-echo images with use of magnetization transfer. Radiology 190: 553–559

    Google Scholar 

  • Forsen S, Hoffman R (1963a) A new method for the study of moderately rapid chemical exchange rates employing nuclear magnetic double resonance. Acta Chem Scand 17: 1787–1788

    Article  CAS  Google Scholar 

  • Forsen S, Hoffman R (1963b) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39: 2892–2901

    Article  CAS  Google Scholar 

  • Forsen S,Hoffman R (1964) Exchange rates by nuclear magnetic multiple resonance: III. Exchange reactions in systems with several nonequivalent sites. J Chem Phys 40:1189–1196

    Google Scholar 

  • Frank JA, Stone LA, Smith ME et al. (1994) Serial contrast-enhanced magnetic resonance imaging in patients with early relapsing-remitting multiple sclerosis: implication for treatment trials. Ann Neurol 36: S86–S90

    Article  PubMed  Google Scholar 

  • Gersonde K, Tolxdorff T. Felsberg L (1985) Identification and characterization of tissues by T2-selective whole-body proton NMR imaging. Magn Reson Med 2: 390–401

    Article  PubMed  CAS  Google Scholar 

  • Goodkin DE, Ross JS, Medendorp SV et al.(1992) Magnetic resonance imaging lesion enlargement in multiple sclerosis. disease-related activity, chance occurrence, or measurement artifact Arch Neurol 49: 261–263

    PubMed  CAS  Google Scholar 

  • Grossman RI, Gonzales-Scarano F, Atlas SW et al. (1986) Multiple sclerosis: gadolinium enhancement in MR imaging Radiology 161: 721–725

    CAS  Google Scholar 

  • Grossman RI, Braffman BH, Brorson JR et al. (1988) Multiple sclerosis: serial study of gadolinium-enhanced MR imaging. Radiology 169: 117–122

    PubMed  CAS  Google Scholar 

  • Grossman RI, Lenkinski RE, Ramer KN et al. (1992) MR proton spectroscopy in multiple sclerosis. AJNR Am J Neuroradiol 13: 1535–1543

    PubMed  CAS  Google Scholar 

  • Hajnal J, De Coene B, Lewis P et al. (1992) High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences. J Comput Assist Tomogr 16: 506–513

    Article  PubMed  CAS  Google Scholar 

  • Harris JO, Frank JA, Patronas N et al. (1991) Serial gadolinium-enhanced magnetic resonance imaging scans in patients with early, relapsing-remitting multiple sclerosis: implications for clinical trials and natural history. Ann Neurol 29: 548–555

    Article  PubMed  CAS  Google Scholar 

  • Haughton VM, Yetkin FZ, Rao SM et al.(1992) Quantitative MR in the diagnosis of multiple sclerosis. Magn Reson Med 26: 71–78

    Article  PubMed  CAS  Google Scholar 

  • Hennig J, Friedburg H (1988) Clinical applications and methodological developments of RARE technique. Magn Reson Imaging 6: 391–395

    Article  PubMed  CAS  Google Scholar 

  • Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 78: 823–833

    Article  Google Scholar 

  • Honig LS, Sheremata WA (1989) Magnetic resonance imaging of spinal cord lesions in multiple sclerosis. J Neurol Neurosurg Psychiatry 52: 459–466

    Article  PubMed  CAS  Google Scholar 

  • Hu BS, Conolly SM, Wright GA et al. (1992) Pulsed saturation transfer contrast. Magn Reson Med 26: 231–240

    Article  PubMed  CAS  Google Scholar 

  • Huber SJ, Paulson GW, Chakeres D et al. (1988) Magnetic resonance imaging and clinical correlations in multiple sclerosis. J Neurol Sci 86: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Husted CA, Goodin DS, Hugg JW et al. (1994) Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol 36: 157–165

    Article  PubMed  CAS  Google Scholar 

  • IFNB Multiple Sclerosis Study Group (1993) Interferon beta-lb is effective in relapsing-remitting multiple sclerosis: I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43: 655–661

    Google Scholar 

  • Isaac C, Li DK, Genton M et al. (1988) Multiple sclerosis: a serial study using MRI in relapsing patients. Neurology 38: 1511–1515

    PubMed  CAS  Google Scholar 

  • Jackson EF, Narayana PA, Wolinsky JS et al. (1993) Accuracy and reproducibility in volumetric analysis of multiple sclerosis lesions. J Comput Assist Tomogr 17: 200–205

    Article  PubMed  CAS  Google Scholar 

  • Kappos L, Stadt D, Ratzka M et al. (1988) Magnetic resonance imaging in the evaluation of treatment in multiple sclerosis. Neuroradiology 30: 299–302

    Article  PubMed  CAS  Google Scholar 

  • Katz D, Taubenberger J, Raine C et al.(1990) Gadolinium-enhancing lesions on magnetic resonance imaging: neuropathological findings. Ann Neurol 28: 243

    Article  Google Scholar 

  • Kermode AG, Tofts PS, MacManus DG et al.(1988) Early lesion of multiple sclerosis [letter].Lancet ii:1203-1204

    Article  Google Scholar 

  • Kermode AG, Tofts PS, Thompson AJ et al. (1990) Heterogeneity of blood-brain barrier changes in multiple sclerosis: an MRI study with gadolinium-DTPA enhancement. Neurology 40: 229–235

    PubMed  CAS  Google Scholar 

  • Kidd D, Thorpe JW, Thompson AJ et al. (1993) Spinal cord MRI using multiarray coils and fast spin echo: II. Findings in multiple sclerosis. Neurology 43: 2632–2637

    PubMed  CAS  Google Scholar 

  • Kikinis R, Shenton M, Jolesz F et al. (1992) Routine quantitative MRI-based analysis of brain and fluid spaces. J Magn Reson Imaging 2: 619–629

    Article  PubMed  CAS  Google Scholar 

  • Kohn M, Tanna N, Herman G (1991) Analysis of brain and cerebrospinal fluid volumes with MR imaging. Radiology 178: 115–122

    PubMed  CAS  Google Scholar 

  • Koopmans RA, Li DK, Oger JJ et al. (1989) Chronic progressive multiple sclerosis: serial magnetic resonance brain imaging over six months. Ann Neurol 26: 248–256

    Article  PubMed  CAS  Google Scholar 

  • Lacomis D, Oabakken M, Gross G (1986) Spin lattice relaxation ( T1) times of cerebral white matter in multiple sderosis. Magn Reson Med 3: 194–202

    Google Scholar 

  • Larsson H, Tofts P (1992) Measurement of blood-brain barrier permeability using dynamic GdDTPA scanning-a comparison of methods. Magn Resone Med 24: 174–176

    Article  CAS  Google Scholar 

  • Larsson HB, Frederiksen J, Kjaer L et al. (1988) In vivo determination of Ti and T2 in the brain of patients with severe but stable multiple sclerosis. Magn Reson Med 7: 43–55

    Article  PubMed  CAS  Google Scholar 

  • Larsson HB, Christiansen P, Jensen M et al. (1991) Localized in vivo proton spectroscopy in the brain of patients with multiple sclerosis. Magn Reson Med 22: 23–31

    Article  PubMed  CAS  Google Scholar 

  • Listerud J, Einstein S, Outwater E et al. (1992) First principles of fast spin echo. Magn Reson Q 8: 199–244

    PubMed  CAS  Google Scholar 

  • Loevner LA, Grossman RI, Lexa FJ et al. (1995) Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology 196: 511–515

    PubMed  CAS  Google Scholar 

  • Maravilla KR, Weinreb C, Suss R et al. (1984) Magnetic resonance demonstration of multiple sclerosis plaques in the cervical cord. AJNR Am J Neuroradiol 5: 685–689

    Google Scholar 

  • Mathews VP, King JC, Elster AD et al.(1994) Cerebral infaction: effects of dose and magnetization transfer experiments. Mag Resn Med 32:517-522

    Article  CAS  Google Scholar 

  • transfer saturation at gadolinium-enhanced MR imaging. Radiology 190:547–552

    Google Scholar 

  • Mauch E, Schroth G, Kornhuber HH et al.(1988) Importance of cranial magnetic resonance imaging in diagnosis of multiple sclerosis without supraspinal signs [letter]. Lancet i:822–823

    Article  Google Scholar 

  • McConnell HM (1958) Reaction rates by nuclear magnetic resonance. J Chem Phys 28: 430–431

    Article  CAS  Google Scholar 

  • McDonald W, Miller D, Thompson A (1994) Are magnetic resonance findings predictive of clinical outcome in therapeutic trials in multiple sclerosis? The dilemma of interferon-n. Ann Neurol 36: 14–18

    Article  PubMed  CAS  Google Scholar 

  • McDonald WI (1992) Multiple sclerosis: diagnostic optimism [editorial]. Br Med J 304:1259–1260 McGowan JC ( 1993 ) Characterization of biological tissue with magnetization transfer. University of Pennsylvania, Philadelphia, PA

    Google Scholar 

  • McGowan JC, Leigh J (1994) Selective saturation in magnetization transfer experiments. Mag Resn Med 32: 517–522

    Article  CAS  Google Scholar 

  • McGowan JC, Schnall MD, Leigh JS (1994a) Magnetization transfer imaging with pulsed off-resonance saturation: contrast variation with saturation duty cycle. J Magn Reson 4: 79–82

    Google Scholar 

  • McGowan JC, Schotland J, Leigh J (1994b) Oscillations, stability, and equilibrium in magnetic exchange networks. J Magn Reson [A] 108: 201–205

    Article  CAS  Google Scholar 

  • Melki P, Mulkern R, Panych L et al. (1991) Comparing the FAISE method with conventional dual-echo sequences. J Magn Reson Imaging 1: 319–326

    Article  PubMed  CAS  Google Scholar 

  • Menken M (1989) Consensus and controversy in neurologic practice. The case of steroid treatment in multiple sclerosis. Arch Neurol 46: 322

    PubMed  CAS  Google Scholar 

  • Miller DH, McDonald WI, Blumhardt LD et al. (1987) Magnetic resonance imaging in isolated noncompressive spinal cord syndromes. Ann Neurol 22: 714–723

    Article  PubMed  CAS  Google Scholar 

  • Miller DH, Rudge P, Johnson G et al (1988) Serial gadolinium enhanced magnetic resonance imaging in multiple sclerosis. Brain 111: 927–939

    Article  PubMed  Google Scholar 

  • Miller DH, Johnson G, Tofts PS et al. (1989) Precise relaxation time measurements of normal-appearing white matter in inflammatory central nervous system disease. Magn Reson Med 11: 331–336

    Article  PubMed  CAS  Google Scholar 

  • Miller DH, Barkhof F, Berry I et al. (1991) Magnetic resonance imaging in monitoring the treatmentof multiple sclerosis: concerted action guidelines. J Neurol Neurosurg Psychiatry 54: 683–688

    Article  PubMed  CAS  Google Scholar 

  • Miller DH, Barkhof F, Nauta JJ (1993) Gadolinium enhancement increases the sensitivity of MM in detecting disease activity in multiple sclerosis. Brain 116: 1077–1094

    Article  PubMed  Google Scholar 

  • Miller DH,Albert PS, Barkhof F et al.(1996) Guidelines for the use of magnetic resonance techniques in monitoring the treatment of multiple sclerosis. Neurology (in press)

    Google Scholar 

  • Mitchell JR, Karlik SJ, Lee DH et al. (1994) Computer-assisted identification and quantification of multiple sclerosis lesions in MR imaging volumes in the brain. J Magn Reson Imaging 4: 197–208

    Article  PubMed  CAS  Google Scholar 

  • Mulkern R, Bleier A, Adzamli I et al. (1989) Two-site exchange revisited: a new method for extracting exchange parameters in biological systems. Biophys. J 55: 221–232

    Article  PubMed  CAS  Google Scholar 

  • Narayana PA, Johnston D, Flamig DP (1991) In vivo proton magnetic resonance spectroscopy studies of human brain. Magn Reson Imaging 9: 303–308

    Article  PubMed  CAS  Google Scholar 

  • Narayana PA, Wolinsky JS, Jackson EF et al (1992) Proton MR spectroscopy of gadolinium-enhanced multiple sclerosis plaques. J Magn Reson Imaging 2: 263–270

    Article  PubMed  CAS  Google Scholar 

  • Nesbit GM, Forbes GS, Scheithauer BW et al. (1991) Multiple sclerosis: histopathologic and MR and/or CT correlation in 37 cases at biopsy and three cases at autopsy. Radiology 180: 467–474

    PubMed  CAS  Google Scholar 

  • Nilsson O, Larsson EM, Holtas S (1987) Myelopathy patients studied with magnetic resonance for multiple sderosis plaques. Acta Neurol Scand 76: 272–277

    Article  PubMed  CAS  Google Scholar 

  • Norbash A, Glover G, Enzmann D (1992) Intracerebral lesion contrast with spin-echo and fast spin-echo pulse sequences. Radiology 185: 661–665

    PubMed  CAS  Google Scholar 

  • Noseworthy J, Van der Voort M, Wong C et al. (1990) Interrater variability with the expanded disability status scale (EDSS) and functional systems ( FS) in a multiple sclerosis clinical trial. Neurology 40: 971–975

    PubMed  CAS  Google Scholar 

  • Ormerod IE, Miller DH, McDonald WI et al. (1987) The role of NMR imaging in the assessment of multiple sderosis and isolated neurological lesions. A quantitative study. Brain 110: 53–76

    Article  PubMed  Google Scholar 

  • Outwater E, Schnall MD, Braitman LE et al. (1992) Magnetization transfer of hepatic lesions: evalua-tion of a novel contrast technique in the abdomen. Radiology 182: 535–540

    PubMed  CAS  Google Scholar 

  • Papadopoulos A, Gatzonis S, Gouliamos A et al. (1994) Correlation between spinal cord MM and clinical features in patients with demyelinating disease. Neuroradiology 36: 130–133

    Article  PubMed  CAS  Google Scholar 

  • Pike GB, Hu BS, Glover GY et al. (1992) Magnetization transfer time-of-flight magnetic resonance angiography. Mag Reson Med 25: 372–379

    Article  CAS  Google Scholar 

  • Raine CS (1991) Demyelinating diseases. In: Davis RL, Robertson DM (eds) Textbook of neuropathology. Baltimore, Williams & Wilkins, 535–620

    Google Scholar 

  • Rumbach L, Armspach JP, Gounot D et al. (1991) Nuclear magnetic resonance T2 relaxation times in multiple sclerosis. J Neurol Sci 104: 176–181

    Article  PubMed  CAS  Google Scholar 

  • Rydberg JN, Hammond CA, Grimm RC et al. (1994) Initial clinical experience in MR imaging of the brain with a fast fluid-attenuated inversion-recovery pulse sequence. Radiology 193: 173–180

    PubMed  CAS  Google Scholar 

  • Simon JH, Jacobs J, Cookfair R et al. (1995) The natural history of MS based on an annual MR snapshot: results from the MSCRG study of intramuscular recombinant interferon beta-la. Neurology 45 (Suppl 4): A418

    Google Scholar 

  • Smith ME, Stone LA, Albert PS et al. (1993) Clinical worsening in multiple sclerosis is associated with increased frequency and area of gadopentetate dimeglumine-enhancing magnetic resonance imaging lesions. Ann Neurol 33: 480–489

    Article  PubMed  CAS  Google Scholar 

  • Thomas DJ, Pennock JM, Hajnal JV et al. (1993) Magnetic resonance imaging of spinal cord in multiple sclerosis by fluid-attenuated inversion recovery. Lancet 341: 593–594

    Article  PubMed  CAS  Google Scholar 

  • Thompson AJ, Kermode AG, MacManus DG et al.(1990) Patterns of disease activity in multiple sclerosis: clinical and magnetic resonance imaging study. Br Med J 300: 631–634

    Article  CAS  Google Scholar 

  • Thompson AJ, Kermode AG, Wicks D et al. (1991) Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 29: 53–62

    Article  PubMed  CAS  Google Scholar 

  • Thompson AJ, Miller D, Youl B et al. (1992) Serial gadolinium-enhanced MM in relapsing/remitting multiple sclerosis of varying disease duration. Neurology 42: 60–63

    PubMed  CAS  Google Scholar 

  • Truyen L, Gheuens J, Parizel PM et al. (1991) Long term follow-up of multiple sclerosis by standard-ized, non-contrast-enhanced magnetic resonance imaging. J Neurol Sci 106: 35–40

    Article  PubMed  CAS  Google Scholar 

  • Turano G, Jones Si, Miller DH et al. (1991) Correlation of SEP abnormalities with brain and cervical cord MRI in multiple sclerosis. Brain 114: 663–681

    Article  PubMed  Google Scholar 

  • Udupa JK, Samarasekera S (1995) Fuzzy connectedness and object definition. SPIE Proc 2431:2–11

    Article  Google Scholar 

  • Udupa JK, Samarasekera S, Venugopal K et al. (1994) Fuzzy objects and their boundaries. SPIE Proc 2359: 50–58

    Article  Google Scholar 

  • Uldry PA, Regli F, Uske A (1993) Magnetic resonance imaging in patients with multiple sclerosis and spinal cord involvement: 28 cases. J Neurol 240; 41–45

    Article  PubMed  CAS  Google Scholar 

  • Van Hecke P, Marchai G, Johannik K et al. (1991) Human brain proton localized NMR spectroscopy in multiple sclerosis. Magn Reson Med 18: 199–206

    Article  PubMed  Google Scholar 

  • Vannier M, Butterfield R, Jordan D et al. (1985) Multispectral analysis of magnetic resonance images. Radiology 154: 221–224

    PubMed  CAS  Google Scholar 

  • Wehrli F, MacFall J, Glover G et al. (1984) The dependence of nuclear magnetic resonance (NMR) image contrast on intrinsic and pulse sequence timing parameters. Magn Reson Imaging 2: 3–16

    Article  PubMed  CAS  Google Scholar 

  • Wehrli F, Breger R, MacFall Jet al. (1985) Quantification of contrast in clinical MR brain imaging at high magnetic field. Invest Radiol 20: 360–369

    Article  PubMed  CAS  Google Scholar 

  • White S, Hajnal J, Young I et al. (1992) Use of fluid-attentuated inversion-recovery pulse sequences for imaging the spinal cord. Magn Reson Med 28; 153–162

    Article  PubMed  CAS  Google Scholar 

  • Wiebe S, Lee DH, Karlik SJ et al. (1992) Serial cranial and spinal cord magnetic resonance imaging in multiple sclerosis. Ann Neurol 32: 643–650

    Article  PubMed  CAS  Google Scholar 

  • Wolff SD, Balaban RS (1989) Magnetization transfer contrast ( MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10: 135–144

    Google Scholar 

  • Wong KT, Grossman RI, Kapouless I, Cohen J (1994) Multiple sclerosis lesion activity: more than just enhancement. Proceedings of the 80th Scientific Assembly and Annual Meeting of the Radiological Society of North America, 319

    Google Scholar 

  • Yeung HN, Aisen AM (1992) Magnetization transfer contrast with periodic pulsed saturation. Radiology 183: 209–214

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag London Limited

About this chapter

Cite this chapter

Grossman, R.I. (1996). Magnetic Resonance Imaging: Current Status and Strategies for Improving Multiple Sclerosis Clinical Trial Design. In: Goodkin, D.E., Rudick, R.A. (eds) Multiple Sclerosis. Springer, London. https://doi.org/10.1007/978-1-4471-1271-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1271-6_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-033-0

  • Online ISBN: 978-1-4471-1271-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics