Skip to main content

Quantum Transport Modelling

  • Chapter

Abstract

The following lectures are an elementary introduction to the computer modelling of quantum transport and tunnelling in very small structures. The emphasis is on quantum ballistic systems for which collision processes are less significant than the free carrier motion in the strongly inhomogeneous (and possibly quantising) potential fields provided by the device structure. Quantum ballistic transport occurs when the carrier transit time is substantially shorter than the mean free time for inelastic collisions. Effects which may arise include size quantisation, localisation phenomena, low-dimensional effects, tunnelling, resonance and interference phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baba T, Mudares M, Barker J R (1989) Monte Carlo Simulation of Resonant Tunnelling Diodes. in the press

    Google Scholar 

  • Barker J R, Mudares M Al, Snell BR, Guimaraes PSS, Taylor DC, Eaves L, Portal J C, Dmowski L and G Hill (1985) Hot electron magnetospectroscopy of sub-micron semiconductors and heterostructures. Physica 134 B: 17–21

    Google Scholar 

  • Barker J R, Mudares M Al, Snell BR, Guimaraes PSS, Taylor DC, Eaves L, Hill G and Portal J C, (1985) Validation of magnetophonon spectroscopy as a tool for analysing hot electron effects in devices. App. Phys. Letters 47: 387

    Google Scholar 

  • Barker J R (1985) Quantum theory of hot electron tunnelling in microstructures. Physica 134B: 22–31

    Google Scholar 

  • Barker J R (1986), Quantum transport theory for small-geometry structures. in Physics and fabrication of microstructures and microdevices M Kelly and C. Weisbuch: editors, Springer-Verlag: London, 210–230

    Google Scholar 

  • Collins S (1986) PhD Thesis, University of Warwick

    Google Scholar 

  • Collins S, Lowe D and J. R. Barker (1987) The quantum mechanical tunnelling problem re-visited J.Phys.O 20: 6213–6232

    Google Scholar 

  • Collins S, Lowe D and J. R. Barker (1988) A dynamic analysis of resonant tunnelling J.Phys.O 20: 6233–6243.

    Google Scholar 

  • Collins S, Lowe D and J. R. Barker (1988) Resonant tunnelling in heterostructures: numerical simulation and qualitative analysis of the current density J. Applied Physics 63: 142–149

    Article  Google Scholar 

  • Fischetti M V (1984) Phys Rev Lett. 53: 1755

    Article  Google Scholar 

  • Fischetti M V and Maria D J (1985) Phys Rev Lett 55: 2475

    Article  Google Scholar 

  • Frohne R and Datta S (1988) Electron transfer between regions with different confining potentials. J.Appl. Phys. 64: 4086–4090

    Google Scholar 

  • Goldberg A, Schey H M and J L Schwartz (1967) Am. J. Phys. 35: 177

    Article  Google Scholar 

  • Landauer R, (1988) Spatial variation of currents and fields due to localised scatterers in metallic conduction. IBM J. Res. Develop. 32: 306–316.

    MathSciNet  Google Scholar 

  • Mains R K, Haddad G I,(1988) Time-dependent modelling of resonant tunnelling diodes from direct solution of the Schrödinger equation. J. Appl. Phys. 64: 3564–3569

    Article  Google Scholar 

  • Messiah A (1964) Quantum Mechanics, North Holland: Amsterdam

    Google Scholar 

  • Peres A (1981) Calculation of localisation lengths in disordered chains. Phys.Rev. 24B: 7463–7466

    MathSciNet  Google Scholar 

  • Peres A (1983a)Transfer matrices for one-dimensional potentials. J.Math.Phys.Rev. 24:1110–1119

    Article  MathSciNet  MATH  Google Scholar 

  • Peres A (1983b) Chaotic band structure of almost periodic potentials Phys.Rev. 27B: 6493–6494

    Google Scholar 

  • Sporleder F, Unger H-G (1979) Waveguide tapers, transitions and couplers.Peregrinus Ltd-London

    Google Scholar 

  • Vassell M, Johnson L and Lockwood H (1983) J.App.Phys. 54: 5206

    Article  Google Scholar 

  • Vigneron J P, Lambin Ph (1980) J. Phys A: Math.Gen. 13: 1135

    Article  MathSciNet  Google Scholar 

  • Vigneron J P, Lambin Ph (1980) J. Phys A: Math.Gen. 12: 1961

    Article  MathSciNet  Google Scholar 

  • Wolf E L (1985) Principles of electron tunnelling spectroscopy Oxford University Press:London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barker, J.R. (1989). Quantum Transport Modelling. In: Snowden, C.M. (eds) Semiconductor Device Modelling. Springer, London. https://doi.org/10.1007/978-1-4471-1033-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1033-0_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1259-4

  • Online ISBN: 978-1-4471-1033-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics