Skip to main content

A Modular Massively Parallel Processor for Volumetric Visualisation Processing

  • Conference paper
High Performance Computing for Computer Graphics and Visualisation

Abstract

Numerous objects and natural phenomena in the spatial and temporal universe and in computational models are three-dimensional (3D) volumes of data. Volumetric visualisation is concerned with the representation, manipulation, interpretation rendering of such volumetric data in order to delve into the voluminous and complex structures and their dynamics. Volumetric visualisation has recently (over the last couple of years) emerged as a key technology for areas, such as medical imaging (for medical diagnosis, surgical planning, radiation therapy, reconstructive surgery, medical education and research), seismic data analysis, molecular modelling, as well as scientific and engineering simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akeley, K. ‘The Silicon Graphics 4D/240GTX Superworkstation’, IEEE Computer Graphics and Applications, Vol. 9, No. 7, pp. 71–83, July 1989.

    Article  Google Scholar 

  2. Cameron, G. G. and Underill, P. E. ‘Rendering Volumetric Medical Image Data on a SIMD Architecture Computer’, Proceedings of Third Eurographics Workshop on Rendering, pp. 137–142, May 1992.

    Google Scholar 

  3. Drebin, R. A., Carpenter, L. and Hanrahan P. ‘Volume Rendering, Computer Graphics’, Vol. 22, No. 4, pp. 65–74, August 1988.

    Google Scholar 

  4. Elvins, T. T. ‘Volume Rendering on a Distributed Memory Parallel Computer’, Proceedings of 1992 Workshop on Volume Visualisation, pp. 93–98, October 1992.

    Google Scholar 

  5. Foley, J. D., Van Dam, A., Feiner, S. K. and Hughes, J. F. ‘Computer Graphics, Principles and Practise’, Addison-Wesley, 1992.

    Google Scholar 

  6. Fuchs, H., Poulton, J., Eyles, J., Greer, T., Goldfeather, J., Ellsworth, D., Molnar, S., Turk, G., Tebbs, B. and Israel, L. Pixel-Planes 5: A Heterogeneous Multiprocessor Graphic System Using Processor Enhanced Memories’, Computer Graphics, Vol. 23, No. 3, pp. 79–88, July 1989.

    Article  Google Scholar 

  7. Goldwasser, S. M. ‘A Generalised Object Display Processor Architecture’, IEEE Computer Graphics and Applications, Vol. 4, No. 10, pp. 43–55, October 1984.

    Google Scholar 

  8. Goldwasser, S. M. and Reynolds, R. A. ‘Real-time Display and Manipulation of 3-D medical Objects: The Voxel Processor Architecture’, Computer Vision, Graphics and Image Processing, Vol. 9, No. 1, pp. 1–27, January 1987.

    Article  Google Scholar 

  9. Habiger, K. M. and Lea, R. M. ‘Hybrid-WSI: A massively Parallel computing technology?’, IEEE Computer, Vol. 26, No. 4, pp. 50–61, April 1993.

    Google Scholar 

  10. Hohne, K. H. and Hanson, W. A. ‘Interactive 3D Segmentation of MRI and CT Volumes Using Morphological Operations’ Journal of Computer Assisted-Tomography, Vol. 16, No. 2, pp. 285–294, February 1992.

    Article  Google Scholar 

  11. Jackel, D. ‘The Graphics PARCUM System: A 3D Memory-based Computer Architecture for Processing and Display of Solid Models’, Computer Graphics Forum, Vol. 4, No. 1, pp. 21–32, January 1985.

    Article  Google Scholar 

  12. Jackel, D. and Strasser, W. ‘Reconstructing Solids from Tomographic Scans-The PARCUM II System’, Advances in Computer Graphics Hardware II (Kuijk, A. A. M. and Strasser, W. eds.), pp. 209–227, Springer-Verlag, 1988.

    Google Scholar 

  13. Kaufman, A. and Bakalash, R. ‘The CUBE System as a 3D Medical Workstation’, Proceedings of SPIE ‘89 Symposium on 3D Visualisation of Scientific Data, pp. 189–194, 1989.

    Google Scholar 

  14. Kaufman, A., Cohen, D. and Yagel, R. ‘Volume Graphics, IEEE Computer’, Vol. 27, No. 7, pp. 51–64, July 1993.

    Google Scholar 

  15. Krikelis, A. ‘Computer Vision Applications with the Associative String Processor’, Journal of Parallel and Distributed Computing, Vol. 13, No. 2, pp. 170–184, October 1991.

    Article  Google Scholar 

  16. Krikelis, A. and Weems, C. C. ‘Associative Processing and Processors’, IEEE Computer, Vol. 27, No. 11, pp. 12–17, November 1994.

    Google Scholar 

  17. Laur, D. and Hanrahan, P. ‘Hierarchical Splatting: A Progressive Refinement Algorithms for Volume Rendering’, Computer Graphics, Vol. 25, No. 4, pp. 285–288, July 1991.

    Article  Google Scholar 

  18. Lea, R. M. ‘ASP: A Cost-effective Parallel Microcomputer’, IEEE Micro, Vol. 8, No. 5, pp. 10–29, October 1989.

    Article  Google Scholar 

  19. Levithal, A. and Porter, T. ‘Chap-A SIMD Graphic Processor’, Computer Graphics, Vol. 18, No. 3, pp. 77–82, July 1984.

    Article  Google Scholar 

  20. Levoy, M. ‘Display of Surfaces from Volume Data’, IEEE Computer Graphics and Applications, Vol. 8, No. 5, pp. 29–37, May 1988.

    Article  Google Scholar 

  21. Lorenson, W. E. and Cline, H. E. ‘Marching Cubes: A High Resolution 3D Surface Construction Algorithm’, Computer Graphics, Vol. 21, No. 4, pp. 163–169, July 1987.

    Article  Google Scholar 

  22. Nieh, J. and Levoy, M. ‘Volume Rendering on Scalable Shared-memory M1MD Architecture’, Proceedings of 1992 Workshop on Volume Visualisation, pp. 17–24, October 1992.

    Google Scholar 

  23. Potmesil, M. and Hoffert, E. M. ‘The Pixel Machine: A Parallel Image Computer’, Computer Graphics, Vol. 23, NO. 3, pp. 69–78, July 1989.

    Google Scholar 

  24. Schrodder, P. and Stoll, G. ‘Data Parallel Volume Rendering as Line Drawing’, Proceedings of 1992 Workshop on Volume Visualisation, pp. 25–32, October 1992.

    Google Scholar 

  25. Sporer, M., Moss, F. H. and Mathias, C. J. ‘An Introduction to the Architecture of the Stellar Graphic Supercomputer’, Proceedings of COMCON, pp. 464–467, IEEE Computer Society Press, Los Alamitos, Callifornia, 1988.

    Google Scholar 

  26. Vezina, G., Fletcher, P. A. and Robertson, P. K. ‘Volume Rendering on the MasPar MP-1’, Proceedings of 1992 Workshop on Volume Visualisation, pp. 3–8, October 1992.

    Google Scholar 

  27. Westover, L. ‘Footprint Evaluation for Volume Rendering’, Computer Graphics, Vol. 24, No. 4, pp. 367–376, July 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag London Limited

About this paper

Cite this paper

Krikelis, A. (1996). A Modular Massively Parallel Processor for Volumetric Visualisation Processing. In: Chen, M., Townsend, P., Vince, J.A. (eds) High Performance Computing for Computer Graphics and Visualisation. Springer, London. https://doi.org/10.1007/978-1-4471-1011-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1011-8_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-76016-0

  • Online ISBN: 978-1-4471-1011-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics