Skip to main content

Parallel Processing for Photo-Realistic Emergency Lighting Visualisation

  • Conference paper
  • 68 Accesses

Abstract

Computer visualisation offers the possibility of investigating the position and illumination of emergency exit signs in an environment under a variety of conditions. This visualisation will enable the optimum visibility of these signs to be determined in advance so that, in the event of an emergency such as a fire, people will be able to identify the numerous exits rapidly and so avoid any unnecessary crushing. To provide a useful tool such a visualisation system must be able to compute the distribution of the lighting in the environment accurately including the light’s interaction with the prevalent smoke from the fire. Furthermore, the system must be interactive, responding immediately to changes in the supplied parameters. This paper examines a parallel implementation of the particle tracing method to achieve such a visualisation system for emergency lighting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The T9000 Transputer Products Overview. Inmos, 1991.

    Google Scholar 

  2. J. M. Airey, J. H. Rohlf, and F. P. Brooks Jr. Towards image realism with interactive update rates in complex virtual building environments. ACM SIGGRAPH Special issue on Interactive SD graphics, 24 (2): 41–50, 1990.

    Google Scholar 

  3. K. Bouatouch and T. Priol. ‘Parallel Space Tracing: An Experience on an iPSC Hypercube’. In N. Magnenat-Thalmann and D. Thalmann, editors, New Trends in Computer Graphics, pages 170–187, 1988.

    Google Scholar 

  4. C. J. Burgess and A. G. Chalmners. Optimum transputer configurations for real applications requiring global communications. In 18th World Occam and Transputer Users Group Conference, IOS Press, Manchester, Apr. 1995.

    Google Scholar 

  5. D. Canter. Fires and Human behaviour. John Wiley & Sons, 1980.

    Google Scholar 

  6. A. G. Chalmers. A Minimum Path system for parallel processing. PhD thesis, University of Bristol, Department of Computer Science, Aug. 1991.

    Google Scholar 

  7. A. G. Chalmers and S. Gregory. Constructing minimum path configurations for multiprocessor systems. Parallel Computing, 19: 343–355, Apr. 1993.

    Article  MATH  Google Scholar 

  8. A. G. Chalmers and D. J. Paddon. Parallel radiosity methods. In D. L. Fielding, editor, 4th North American Transputer Users Group, pages 183–193, IOS Press, Ithaca, NY, Oct. 1990.

    Google Scholar 

  9. A. G. Chalmers, D. Stuttard, and D. J. Paddon. Data management for parallel raytracing of complex images. In S. P. Mudur and S. Pattanaik, editors, International Conference on Computer Graphics, pages 149–162, North Holland, Bombay, Feb. 1993.

    Google Scholar 

  10. B. L. Collins, M. S. Dahir, and D. Madrzykowski. Visibility of exit signs in clear and smoky conditions. Journal of the Illumination Engineering Society, 69–83, 1992. Winter 1992.

    Google Scholar 

  11. A. S. Glassner. ‘Space Subdivision for Fast Ray Tracing’. IEEE Computer Graphics and Applications, 4(10):15–22, oct 1984.

    Google Scholar 

  12. C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile. Modelling the interaction of light between diffuse surfaces. ACM Computer Graphics, 18 (3): 213–222, July 1984.

    Article  Google Scholar 

  13. P. Green and E. Morgan. Parallelisation schemes for progressive refinement radiosity method for the synthesis of realistic images. In P. Nixon, editor, 18 th World Occam. and Transputer user group meeting, IOS Press, Manchester, Apr. 1995.

    Google Scholar 

  14. S. Green. Parallel Processing for Computer Graphics. Research Monographs in Paralle and Distributed Computing, Pitman Publishing, London, 1991.

    Google Scholar 

  15. J. M. Hammersley and D. C. Handscomb. Monte Carlo methods. Methuen and Company Ltd., London, 1964.

    Book  MATH  Google Scholar 

  16. F. H. Harlow and P. I. Nakayama. Transport of turbulence energy decay rate. Technical Report LA-3854, Los Alamos Scientific Laboratory, Los Alamos, 1968.

    Google Scholar 

  17. P. S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. ACM Computer Graphics, 24 (4): 145–154, Aug. 1990.

    Article  Google Scholar 

  18. F. W. Jansen and A. G. Chalmers. Realism in real-time? In Proceedings of the Fourth Eurographics Workshop on Rendering, Paris, June 1993.

    Google Scholar 

  19. J. T. Kajiya. The rendering equation. ACM Computer Graphics, 20 (4): 143–150, Aug. 1986.

    Article  Google Scholar 

  20. KSR. KSR Technical Summary. Kendall Square Research, Waltham, MA, 1992.

    Google Scholar 

  21. D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy. The DASH prototype: logic overhead and performance. IEEE Transactions on Parallel and Distributed Systems, 4 (1): 41–61, Jan. 1993.

    Article  Google Scholar 

  22. K. Li. Ivy: a shared virtual memory system for parallel computing. Proceedings of the 1988 International Conference on Parallel P rocessing, 2: 94–101, Aug. 1988.

    Google Scholar 

  23. G. London Council. Code of practice: Means of escape in case of fire. 1976.

    Google Scholar 

  24. M. G. Norman. Bulk synchronous parallelism. WoTUG Newsletter, 17: 3235, July 1992.

    Google Scholar 

  25. S. N. Pattanaik. Computational methods for global illumination and visualisation of complex 3D environments. PhD thesis, National Centre for Software Technology, Juhu, Bombay, India, Feb. 1993.

    Google Scholar 

  26. W. Rodi and N. N. Mansour. Low Reynolds number k–e modelling with the aid of direct simulation data. Journal of Fluid Mechanics, 250: 509–529, 1993.

    Article  MATH  Google Scholar 

  27. H. E. Rushmeier and K. E. Torrance. Extending the radiosity method to include specularly reflecting and translucent materials. ACM Transactions on Graphics, 9 (1): 1–27, Jan. 1990.

    Article  MATH  Google Scholar 

  28. H. E. Rushmeier and K. E. Torrance. The zonal method for calculating light intensities in the presence of a participating medium. ACM Computer Graphics, 21 (4): 293–302, July 1987.

    Article  Google Scholar 

  29. L. P. Santos, A. G. Chalmers, and A. Proença. A message density monitoring strategy for distributed memory parallel systems. In A. Biriukov, editor, 2nd International conference on. Software for Multiprocessors and Supercomputers: Theory, practice and experience, Moscow, Sep. 1994. To appear.

    Google Scholar 

  30. F. Sillion and C. Puech. A general two-pass method integrating specular and diffuse reflection. ACM Computer Graphics, 23 (3): 335–344, July 1989.

    Google Scholar 

  31. J. P. Tidmus, A. G. Chalmers, and R. M. Miles. Distributed monte carlo techniques for interactive photo-realistic image synthesis. In R. Miles and A. Chalmers, editors, 17th World Occam and Transputer Users Group conference, pages 139–147, IOS Press, Bristol, 1994.

    Google Scholar 

  32. L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33 (8): 103–111, Aug. 1990.

    Article  Google Scholar 

  33. J. R. Wallace, M. F. Cohen, and D. P. Greenberg. A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods. ACM Computer Graphics, 21 (4): 311–320, July 1987.

    Article  Google Scholar 

  34. D. H. D. Warren and S. Haridi. The Data Diffusion Machine—a scalable shared virtual memory multiprocessor. In Proceedings of the 1988 International Conference on Fifth Generation Computer Systems, pages 943–952, Tokyo, Japan, Dec. 1988.

    Google Scholar 

  35. A. Watt. Fundamentals of Three-Dimensional Computer Graphics. Addison-Wesley Publishing Company, 1989.

    Google Scholar 

  36. T. Whitted. An improved illumination model for shaded display. Communications of the ACM, 23 (6): 343–349, June 1980.

    Article  Google Scholar 

  37. H. Xu, Q. Peng, and Y. Liang. Accelerated radiosity method for complex environments. In W. Hansinann, F. R. A. Hopgood, and W. Strasser, editors, Eurographics ‘89, pages 51–59, Elsevier Science Publishers B.V, North-Holland, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag London Limited

About this paper

Cite this paper

Chalmers, A.G., Ramstad, T. (1996). Parallel Processing for Photo-Realistic Emergency Lighting Visualisation. In: Chen, M., Townsend, P., Vince, J.A. (eds) High Performance Computing for Computer Graphics and Visualisation. Springer, London. https://doi.org/10.1007/978-1-4471-1011-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1011-8_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-76016-0

  • Online ISBN: 978-1-4471-1011-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics