Skip to main content

Shared-Memory Multiprocessor Implementation of Voxelization for Volume Visualization

  • Conference paper
High Performance Computing for Computer Graphics and Visualisation

Abstract

Shared-memory multiprocessor workstations have become widely available to the visualization community. Direct volume rendering of unstructured grids is a computationally intensive problem that is of substantial interest in scientific visualization. This paper presents a parallel algorithm for a voxelization-based direct volume rendering of unstructured grids and its implementation on a shared-memory multiprocessor.

Two highlights of the algorithm are data coherence and work distribution. The data coherence property reduces voxelization to incremental computation of voxel values within a cell using a projection approach. The work distribution is achieved by multiple processors performing voxelization in parallel on a shared-memory machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arie Kaufman and Eyal Shimony, 3D Scan-Conversion Algorithms for Voxel-Based Graphics, Proc. of ACM Workshop on Interactive 3D Graphics, Computer Graphics, Chapel Hill, NC, October 1986.

    Google Scholar 

  2. Craig Upson et al., The Application Visualization Systems: A Computational Environment for Scientific Visualization, IEEE Computer Graphics and Applications, Vol. 9, No. 4, July 1989, pp. 30–42.

    Article  Google Scholar 

  3. Nelson Max, Pat Hanrahan and Roger Crawfis, Area and Volume Coherence for Efficient Visualization of 3D Scalar Functions, Proc. of San Diego Workshop on Volume Visualization, Computer Graphics, Vol. 24, No. 5, Nov 1990, pp. 27–33.

    Google Scholar 

  4. Christopher Giertsen, Volume Visualization of Sparse irregular Meshes, IEEE CG &A, March 1992, pp. 40–48.

    Google Scholar 

  5. Nelson Max, Barry Becker and Roger Crawfis, Flow Volumes for Interactive Vector Field Visualization, Proc. of Visualization 93, San Jose, Oct. 1993.

    Google Scholar 

  6. Christopher Giertsen and Johnny Petersen, Parallel Volume Rendering on a Network of Workstations, IEEE CG &A, Nov 1993, pp. 16–23.

    Google Scholar 

  7. Marc Levoy et al, Volume Rendering on Scalable Shared-Memory MIMD Architectures, Proc. Workshop on Volume Visualization 92, Boston, Oct 1992, pp.17–24.

    Google Scholar 

  8. Peter L. Williams, Interactive Splatting of Nonrectilinear Volumes, Proc. Visualization 92, Boston, Oct 1992, pp. 37–44.

    Google Scholar 

  9. Bruce Lucas, An Architecture for a Scientific Visualization System, Proc. Visualization 92, Boston, Oct 1992, pp. 107–114.

    Google Scholar 

  10. Bruce Lucas, A Scientific Visualization Renderer, Proc. Visualization 92, Boston, Oct 1992, pp. 227–234.

    Google Scholar 

  11. Peter L. Williams, Interactive Direct Volume Rendering of Curvilinear and Unstructured Data, PhD thesis, Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1992.

    Google Scholar 

  12. Arie Kaufman, Daniel Cohen and Roni Yagel, Volume Graphics, IEEE Computer, 1993, pp. 51–64.

    Google Scholar 

  13. Sidney W. Wang and Arie Kaufman, Volume Sampled Voxelization of Geometric Primitives, Proc. of IEEE Visualization 93, 1993.

    Google Scholar 

  14. James J. Quirk, An Alternative to Unstructured Grids for Computing Gas Dynamic Flows Around Arbitrarily Complex Two-Dimensional Bodies, Computers and Fluids, Vol. 23, No. 1, pp. 125–142, 1994.

    Article  MATH  Google Scholar 

  15. T.A. Foley, H. Hagen and G. M. Nielson, Visualizing and modeling unstructured data, The Visual Computer, Vol. 9, 1993, pp. 439–449.

    Article  Google Scholar 

  16. Jane Wilhelms, Pursuing interactive visualization of irregular grids, The Visual Computer, Vol. 9, 1993, pp. 450–458.

    Article  Google Scholar 

  17. Judy Challinger, Scalable Parallel Volume Raycasting for Nonrectilinear Computational Grids, Proc. of Parallel Rendering Symposium 1993, Oct 1993, pp. 81–88.

    Google Scholar 

  18. C. E. Prakash and S. Manohar, Direct Volume Rendering of Unstructured Grids: A Voxelization Approach, to appear in Computers and Graphics, 1995.

    Google Scholar 

  19. Cabral, Cam, and Foran, Texture Mapped Volume Rendering, Proc. of IEEE Visualization 1994, October, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag London Limited

About this paper

Cite this paper

Prakash, C.E., Manohar, S. (1996). Shared-Memory Multiprocessor Implementation of Voxelization for Volume Visualization. In: Chen, M., Townsend, P., Vince, J.A. (eds) High Performance Computing for Computer Graphics and Visualisation. Springer, London. https://doi.org/10.1007/978-1-4471-1011-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1011-8_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-76016-0

  • Online ISBN: 978-1-4471-1011-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics