Skip to main content

α-Stochastic Differential Equations and Option Pricing Model

  • Conference paper
Book cover Fractals in Engineering
  • 348 Accesses

Abstract

This paper develops a numerical model for option pricing under the hypothesis that the underlying asset price satisfies a stochastic differential equation driven by an α-stable Lévy motion. We feed this model with simulated European call option prices and use it to explain the skewed “smile effect” of the implied volatility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belkacem, L. (1996): Processus Stables et Applications en Finance: CAPM, Risque, Choix des Portefeuilles, Évaluation des Options dans un Marché α-stable. PhD thesis, Université de Paris IX.

    Google Scholar 

  2. Belkacem, L., Lévy Véhel, J., Walter, C. (Janvier 1996): CAPM, Risk and Portfolio selection in”Stable” Markets. Rapport de recherche 2776, INRIA.

    Google Scholar 

  3. Black, F., Scholes, M. (1973): The pricing of options and corporate liabilities. J. Political Economy, 81, 637–659.

    Article  Google Scholar 

  4. Chambers, J.M., Mallows, C, Stuck, B.W. (1976): A method simulating stable random variables. J. Amer. Stat. Asso, 71, 340–344.

    Article  MathSciNet  MATH  Google Scholar 

  5. Clark, P.K. (1973): A subordinated stochastic process model with finite variance for speculative prices. Econometrica, 41, 135–155.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cox, J.C., Ross, S.A., Rubinstein, M. (1979): Option pricing: a simplified approach. J. Financial Economics, 7, 229–264.

    Article  MATH  Google Scholar 

  7. Dalang, R.C, Morton, A., Willinger, W. (1990): Equivalent Martingale measures and no arbitrage in stochastic securities market models. Stochastics and Stochastics Reports, 29(2), 185–202.

    MathSciNet  MATH  Google Scholar 

  8. Derman, E.H., Kani, I. (1994): Riding on smile. Risk, 7, 33–39.

    Google Scholar 

  9. Fama, E.F. (January 1965): The Behavior of Stock Market Prices. Journal of Business, 38.

    Google Scholar 

  10. Feller, W. (1971): An Introduction to Probability Theory and its Applications. Wiley, New York, 2nd edition.

    MATH  Google Scholar 

  11. Harrison, J.M., Kreps, D.M. (1979): Martingale and arbitrage in multiperiods securities markets. J. Economic Theory, 20, 381–408.

    Article  MathSciNet  MATH  Google Scholar 

  12. Harrison, J.M., Pliska, S.R. (1981): Martingales and stochastic integrals in theory of continuous trading. Stochastic Processes App., 11, 215–260.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hull, J., White, A. (1987): The pricing of options on assets with stochastic volatilities. J. of Finance, 42, 281–300.

    Article  Google Scholar 

  14. Hurst, S.R., Platen, E., Rachev, S.T. (1995): Option pricing for asset returns driven by subordinated processes. Technical Report 281, Dep. of Statistics and Applied Probability, University of California, Santa Barbara, CA, 1995.

    Google Scholar 

  15. Janicki, A., Podgorski, K., Weron, A. (1991): Computer simulation of un¬stable Ornstein-Uhlenbeck stochastic processes. In R. Karandikar S. Cambanis, J.K. Ghosh and P.K. Sen Eds., editors, Stochastic Processes, A Festschrift in Honor of Gopinath Kallianpur, Springer, New York, 1991.

    Google Scholar 

  16. Janicki, A., Weron, A. (1994): Simulation and Chaotic Behavior of α-Stable Stochastic Processes. Marcel Dekker, INC, New York.

    Google Scholar 

  17. Kwapien, S., Woyczynski, N.A. (1992): Random series and stochastic integrals: single and multiple. Boston.

    Book  MATH  Google Scholar 

  18. Latané, H.A., Rendleman, R.J. (1976): Standard deviations of stock price ratios implied in option prices. J. of Finance, 31, 369–382.

    Article  Google Scholar 

  19. Mandelbrot, B. (1963): New Methods in Statistical Economics. Journal of Political Economy, 56.

    Google Scholar 

  20. Mandelbrot, B. (1966): The Variation of Some Other Speculative Prices. J. Business, 39.

    Google Scholar 

  21. Mandelbrot, B.B., Taylor, H.M. (1967): On the distribution of stock price differences. Operations Research, 15, 1057–1062.

    Article  Google Scholar 

  22. Merton, R. (1973): Theory of rational option pricing. Bell J. Econ. Manag. Sc., 4, 141–183.

    Article  MathSciNet  Google Scholar 

  23. Mittnik, S., Rachev, S.T. (1993): Reply to Comments on Modeling Asset Returns with Alternative Stable Distributions and Some Extensions. Econ. Rev., 12, 347–390.

    Article  MathSciNet  Google Scholar 

  24. Pardoux, E., Talay, D. (1985): Discretization and simulation of stochastic differential equations. Applicandae Mathematicae, 3, 23–47.

    Article  MathSciNet  MATH  Google Scholar 

  25. Platen, E., Schweizer, M. (1994): On smile and skewness. Statistics Research Report SSR 027-94, Center for Mathematics and its Applications, School of Mathematical Sciences, The Australian National University.

    Google Scholar 

  26. Protter, P. (1990): Stochastic integration and differential equations: A new Approach. New York.

    Google Scholar 

  27. Protter, P., Talay, D. (Juillet 1995): The Euler scheme for Lé driven stochastic differential equations. Rapport de recherche 2621, INRIA.

    Google Scholar 

  28. Rachev, S.T., Ruschendorf, L. (1994): Models of option prices. SIAM Theory of Prob. and its App., 39, 120–152.

    Article  MathSciNet  Google Scholar 

  29. Rachev, S.T., Samorodinsky, G. (1992): Option pricing formula for speculative prices modeled by subordinated stochastic processes. Technical report, Dep. of Statistics and Applied Probability, University of California, Santa Barbara, CA.

    Google Scholar 

  30. Renault, E., Touzi, N. (1996): Option hedging and implied volatilities in a stochastic volatility model, Mathematical Finance, 6(3), 279–302.

    Article  MATH  Google Scholar 

  31. Rosinski, J., Woyczynski, W.A. (1986): On itô stochastic integration with respect to p-stable motion: inner clock, integrability of sample paths, double and multiple integrals. The Annals of Probability, 14, 271–286.

    Article  MathSciNet  MATH  Google Scholar 

  32. Sato, K. (1991): Self-similar processes with independent increments. Probab. Th. Rel. Fields, 89, 285–300.

    Article  MATH  Google Scholar 

  33. Scott, L. (1987): Option pricing when the variance changes randomly: theory, estimation and application. J. Financial Quant. Anal., 22, 419–438.

    Article  Google Scholar 

  34. Striker, C. (1990): Arbitrage et lois de martingales. Annales de ι’I.H.P., 26, 451–460.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London Limited

About this paper

Cite this paper

Belkacem, L. (1997). α-Stochastic Differential Equations and Option Pricing Model. In: Lévy Véhel, J., Lutton, E., Tricot, C. (eds) Fractals in Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-0995-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0995-2_27

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1253-2

  • Online ISBN: 978-1-4471-0995-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics