Skip to main content

Accessibility of a Catalyst’s Fractal Surface to Diffusing and Reacting Molecules

  • Conference paper
Fractals in Engineering

Abstract

Many porous catalysts have a fractal internal surface on molecular scales. Similar to a natural coastline, the fractal roughness of the surface creates a cascade of fjords along the pores. In a heterogeneously catalyzed reaction, molecules diffuse through the pores and react on the surface. Because of the fractal cascades of fjords along the pores, some points on the catalyst’s internal surface are more easily reached than other points. This influences the diffusion of molecules through the pore space and leads to a nonuniform reaction probability distribution over the surface. Gas diffusion within a cascade of fjords is mainly Knudsen diffusion, so that the results are fundamentally different when compared to the often studied molecular diffusion or analogous phenomena, like conduction. The obtained results are useful in the investigation of whether important diffusion limitations within the fjord cascades along a fractal catalyst surface exist, and, if so, on which subset of the surface the active phase may be concentrated without altering the effective reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avnir, D., Farin, D., Pfeifer, P. (1984). Nature 308, 261.

    Article  Google Scholar 

  2. Pfeifer, P., Avnir, D. (1983). J. Chem. Phys. 79, 3558.

    Article  MathSciNet  Google Scholar 

  3. Pfeifer, P., Avnir, D. (1984). J. Chem. Phys. 80, 4573.

    Article  Google Scholar 

  4. Avnir, D. Farin, D., Pfeifer, P. (1983). J. Chem. Phys. 79, 3566.

    Article  MathSciNet  Google Scholar 

  5. Coppens, M.-O. (1996). Ph. D. thesis, Gent University, Belgium.

    Google Scholar 

  6. Coppens, M.-O., Froment, G.F. (1995). Chem. Engng Sei. 50, 1013.

    Article  Google Scholar 

  7. Meakin, P. (1986). Chem. Phys. Lett. 123, 428.

    Article  Google Scholar 

  8. Gutfraind, R., Sheintuch, M., Avnir, D. (1990). Chem. Phys. Lett. 174, 8.

    Article  Google Scholar 

  9. Gutfraind, R., Sheintuch, M., Avnir, D. (1991). J. Chem. Phys. 95, 6100.

    Article  Google Scholar 

  10. Lee, C.-K., Liang, W.-H., Lee, S.-L. (1994). J. Chinese Chem. Soc. 41, 665.

    Google Scholar 

  11. Lee, C.-K., Lee, S.-L. (1995). Surf. Sei. 325, 294.

    Article  Google Scholar 

  12. Lee, C.-K., Lee, S.-L. (1995). Surf. Set. 339, 171.

    Article  Google Scholar 

  13. Sapoval, B. (1991): Fractals in Disordered Systems. Eds. A. Bunde and S. Havlin (Springer, Heidelberg).

    Google Scholar 

  14. Sapoval, B. (1991). C. R. Acad. Sc. Paris, Série II 312, 599.

    Google Scholar 

  15. Sapoval, B., Gutfraind, R., Meakin, P., Keddam, M., Takenouti, H. (1993). Phys. Rev. E 48, 3333.

    Article  Google Scholar 

  16. Sapoval, B. (1994). Pour la Science 198, 30.

    Google Scholar 

  17. Coppens, M.-O., Froment, G.F. (1995). Fractals 3, 807.

    Article  MATH  Google Scholar 

  18. Coppens, M.-O., Froment, (1995): Fractal Geometry and Analysis. The Mandelbrot Festschrift, Curaçao, Netherlands Antilles, 2–4 February 1995, eds. C. J. G. Evertsz, H.-O. Peitgen and R. F. Voss (World Scientific, Singapore, 1996), 403.

    Google Scholar 

  19. Coppens, M.-O., Froment, G.F. (1994). Chem. Engng Sei. 49, 4897.

    Article  Google Scholar 

  20. Mandelbrot, B.B., Evertsz, C.J.G. (1990). Nature 348, 143.

    Article  Google Scholar 

  21. Evertsz, C.J.G., Mandelbrot, B.B. (1992). J. Phys. A: Math. Gen. 25, 1781.

    Article  MathSciNet  Google Scholar 

  22. Mandelbrot, B.B. (1989). Pure Appl. Geophys. 131, 5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London Limited

About this paper

Cite this paper

Coppens, MO. (1997). Accessibility of a Catalyst’s Fractal Surface to Diffusing and Reacting Molecules. In: Lévy Véhel, J., Lutton, E., Tricot, C. (eds) Fractals in Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-0995-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0995-2_25

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1253-2

  • Online ISBN: 978-1-4471-0995-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics