Skip to main content

Fractional Fourier analysis of objects with scaling symmetry

  • Conference paper
Fractals in Engineering

Abstract

The fractional Fourier analysis is used for investigation of fractal structures. As is shown, it reveals the scaling features of deterministic as well as of the random fractals, and allows to determine their main characteristics. As an example we present the fractional Fourier analysis of some self-affine functions. The map of the Radon-Wigner transform of the triadic Cantor set is considered numerically. The application of the fractional Fourier analysis in optical engineering is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. Freeman, New York.

    MATH  Google Scholar 

  2. Allain, C, Cloitre, M. (1986). Phys Rev E 33, 3566–3569.

    Google Scholar 

  3. Lakhtakia, A., Holter, N.S., Varadan, V.K., Varadan, V.V. (1987). IEEE Trans Ant Prop 35, 236–239.

    Article  Google Scholar 

  4. Uozumi, J., Sakurada, Y., Asakura, T. (1995). J Mod Optics 42, 2309–2322.

    Article  Google Scholar 

  5. Giona, M., Patiero, O. (1997): Integral transforms of multifractal measures. In: this volume.

    Google Scholar 

  6. Argoul, F., Arneodo, A., Elezgaray, J., Grasseau, G., Murenzi, R. (1990). Phys Rev A 41, 5537–5560.

    Article  MathSciNet  Google Scholar 

  7. Muzy, J.F., Bacry, E., Arneodo, A. (1991). Phys Rev Lett 67, 3515–3518.

    Article  Google Scholar 

  8. Namias, V. (1980). J. Inst Math. Appl. 25, 241–265.

    Article  MathSciNet  MATH  Google Scholar 

  9. Alieva, T., Lopez, V., Agullo-Lopez, F., Almeida, L.B. (1994). J Mod Optics 41, 1037–1044.

    Article  Google Scholar 

  10. Mendlovic, D., Ozatkas, H.M. (1993). J Opt Soc Am A 10, 1875–1881.

    Article  Google Scholar 

  11. Lohmann, A.W. (1993). J Opt Soc Am A 10, 2181–2186.

    Article  Google Scholar 

  12. Almeida, L.B. (1994). IEEE Trans Signal Process 42, 3084–3091.

    Article  Google Scholar 

  13. Lohmann, A.W., Soffer, B.H. (1994). J Opt Soc Am A 11, 1798–1801.

    Article  MathSciNet  Google Scholar 

  14. Feynman, R.P., Hibbs, R.P. (1965): Quantum Mechanics and Path Integral. McGraw-Hill, New York.

    Google Scholar 

  15. Wigner, E. (1932). Phys Rev 40, 749–759.

    Article  MATH  Google Scholar 

  16. Raymer, M.G., Beck, M., McAlister, D.F. (1994). Phys Rev Lett 72, 1137–1140.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bastiaans, M.J. (1978). Optics Comm 25, 26–30.

    Article  Google Scholar 

  18. Feder, J. (1988). Fractals. Plenum Press, New York.

    MATH  Google Scholar 

  19. Alieva, T., Agullo-Lopez, F. (1996). Optics Comm 125, 267–274.

    Article  Google Scholar 

  20. Gradshteyn, LS., Ryzhik, I.M. (1994): Table of Integrals, Series, and Products. Academic Press, New York.

    MATH  Google Scholar 

  21. Alieva, T. (1996). J Opt Soc Am A 13, 1189–1192.

    Article  MathSciNet  Google Scholar 

  22. Born, M., Wolf, E. (1965): Principles of Optics. Pergamon Press, Oxford.

    Google Scholar 

  23. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I. (1986). Phys Rev A 33, 1141–1151.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London Limited

About this paper

Cite this paper

Alieva, T., Barbé, A.M. (1997). Fractional Fourier analysis of objects with scaling symmetry. In: Lévy Véhel, J., Lutton, E., Tricot, C. (eds) Fractals in Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-0995-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0995-2_19

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1253-2

  • Online ISBN: 978-1-4471-0995-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics