Skip to main content

Planar Lightwave Circuits (PLCs)

  • Conference paper
Photonic Networks

Abstract

Planar lightwave circuits (PLCs) provide various important devices for optical WDM, TDM systems, subscriber networks and etc. This paper reviews the recent progress and future prospects of PLC technologies including arrayed-waveguide grating multiplexers, optical add/drop multiplexers, programmable dispersion equalizers and hybrid optoelectronics integration technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.Kawachi, “Silica waveguide on silicon and their application to integrated-optic components”, Opt. and Quantum Electron., vol. 22. pp. 391–416, 1990.

    Google Scholar 

  2. Y. Ohmori “Passive and active silica waveguides on silicon”, Proc. ECOC’93 MoPl.l, Montreux, 1993.

    Google Scholar 

  3. K. Okamoto, “Application of planar lightwave circuits to optical communication systems”, ECOC’95 MoB4.1, Brussels, 1995.

    Google Scholar 

  4. T. Kitagawa et al., “Erbium-doped silica-based planar amplifier module pumped by laser diodes”, Proc. ECOC’93 ThC12.11, Montreux, 1993.

    Google Scholar 

  5. T. Kitagawa et al., “Single-frequency Er-doped silica-based planar waveguide laser with integrated photo-induced Bragg reflectors”, Electron. Lett., vol. 30, pp. 1311–1312, 1994.

    Article  Google Scholar 

  6. Y.Yamada et al., “Application of planar lightwave circuit platform to hybrid integrated optical WDM transmitter/receiver module”, Electron. Lett., vol. 31, pp. 1366–1367, 1995.

    Article  Google Scholar 

  7. M. Horiguchi et al., “Recent progress on hybrid integration technology using PLC platforms”, Photonics Switching, PTuB4, Sendai, 1996.

    Google Scholar 

  8. K. Jinguji et al., “Synthesis of coherent two-port lattice-form optical delay-line circuit”, IEEE Jour. Lightwave Tech., vol. 13, pp. 73–82, 1995.

    Article  Google Scholar 

  9. K.Takiguchi et al., “Planar lightwave circuit dispersion equalizer module with polarization insensitive properties”, Electron. Lett., vol. 31, pp. 57–58, 1995.

    Article  Google Scholar 

  10. S. Suzuki et al., “Large-scale and high-density planar lightwave circuits with high- Δ Ge02-doped silica waveguides”, Electron. Lett., vol. 28, pp. 1863–1864, 1992.

    Google Scholar 

  11. Y.Hibino et al., “Propagation loss characteristics of long silica-based optical waveguides on 5 inch Si wafers”, Electron. Lett., vol. 29, pp. 1847–1848, 1993.

    Article  Google Scholar 

  12. Y. Hida et al., “10 m long silica-based waveguide with a loss of 1.7 dB/m”, IPR’95, Dana Point, CA, 1995.

    Google Scholar 

  13. K.Okamoto et al., “Fabrication of 64x64 arrayed-waveguide grating multiplexer on silicon”, Electron. Lett., vol. 31, pp. 184–185, 1995.

    Article  Google Scholar 

  14. K.Takada et al., “Origin of channel crosstalk in 100 GHz-spaced silica-based arrayed-waveguide grating multiplexer”, Electron. Lett., vol. 31, pp. 1176–1177, 1995.

    Article  Google Scholar 

  15. K. Okamoto et al., “Fabrication of 128-channel arrayed-waveguide grating multiplexer with a 25-GHz channel spacing”, to be published in Electron. Lett.

    Google Scholar 

  16. H.Yamada et al., “10 GHz-spaced arrayed-waveguide grating multiplexer with phase-error-compensating thin-film heaters”, Electron. Lett., vol. 31, pp. 360–361, 1995.

    Article  Google Scholar 

  17. H. Yamada et al., “Statically-phase-compensated 10 GHz-spacing arrayed-waveguide grating”, to be published in Electron. Lett.

    Google Scholar 

  18. Y.Inoue et al., “Polarization mode converter with polyimide half waveplate in silica- based planar lightwave circuits”, IEEE Photonics Tech. Lett., vol. 6, pp. 626–628, 1994.

    Article  Google Scholar 

  19. K.Okamoto et al., “Arrayed-waveguide grating multiplexer with flat spectral response”, Opt. Lett., vol. 20, pp. 43–45, 1995.

    Article  Google Scholar 

  20. K.Okamoto et al., “Eight-channel flat spectral response arrayed-waveguide multiplexer with asymmetrical Mach-Zehnder filters”, IEEE Photonics Tech. Lett., vol. 8, pp. 373–374, 1996.

    Article  Google Scholar 

  21. M.R.Amersfoort et al., “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers”, Electron. Lett., vol. 32, pp. 449–451, 1996.

    Article  Google Scholar 

  22. C. Dragone, US patent no. 5412744.

    Google Scholar 

  23. K. Okamoto et al., “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns”, to be published in Electron. Lett.

    Google Scholar 

  24. W. K. Burns et al., “Optical waveguide parabolic coupling horns”, Appi. Phys. Lett., vol. 30, pp. 28–30, 1977.

    Article  Google Scholar 

  25. F. Forghieri et al., “Repeaterless transmission of eight channels at 10 Gb/s over 137 km (11 Tb/s-km) of dispersion-shifted fiber using unequal channel spacing”, IEEE Photonics Tech. Lett., vol. 6. pp. 1374–1376, 1994.

    Article  Google Scholar 

  26. K. Oda et al., “10-channelxlO-Gbit/s optical FDM transmission over 500 km dispersion shifted fiber employing unequal channel spacingand amplifier gain equalization”, Proc. OFC’95 Tuhl, San Diego, 1995.

    Google Scholar 

  27. K.Okamoto et al., “Fabrication of unequal channel spacing arrayed-waveguide grating multiplexer modules”, Electron. Lett., vol. 31, pp. 1464–1465, 1995.

    Article  Google Scholar 

  28. K.Okamoto et al., “Fabrication of multiwavelength simultaneous monitoring device using arrayed-waveguide grating”, Electron. Lett., vol. 31, pp. 569–570, 1996. silica-based arrayed- waveguide gratings”, Electron. Lett., vol. 31, pp.723–724, 1995.

    Article  Google Scholar 

  29. K. Okamoto et al., “16-channel optical Add/Drop multiplexer consisting of arrayed-waveguide gratings and double-gate switches” to be published in Electron. Lett.

    Google Scholar 

  30. A. Sugita et al., “Bridge-suspended thermo-optic phase shifter and its application to silica-waveguide optical switch”, Proc. of IOOC’89, 1989, Paper 18D1–4, p. 58.

    Google Scholar 

  31. M. Ashish et al., “Highly efficient single-mode fiber for broadband dispersion compensation”, OFC’93 Postdeadline paper PD13, San Jose, 1993.

    Google Scholar 

  32. A. H. Gnauck et al., “10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion”, IEEE Photonics Tech. Lett., vol. 5, pp. 663–666, 1993.

    Article  Google Scholar 

  33. K.Takiguchi et al., “Planar lightwave circuit optical dispersion equalizer”, IEEE Photonics Tech. Lett., vol. 6, pp. 86–88, 1994.

    Article  Google Scholar 

  34. K. O. Hill et al., “Chirped in-fiber Bragg grating dispersion compensators; linearlization of dispersion characteristics and demonstration of dispersion compensation in 100 km, 10 Gbit/s optical fiber link”, Electron. Lett., vol. 30, pp. 1755–1756, 1994.[36] K.Okamoto et al., “Guided-wave optical equalizer with a -power chirped grating”, IEEE Jour. Lightwave Tech., vol. 11, pp. 1325–1330, 1993.

    Google Scholar 

  35. K. Takiguchi et al., “Variable group-delay dispersion equalizer based on a lattice-form programmable optical filter”, Electron. Lett., vol. 31, pp. l240–1241, 1995.

    Google Scholar 

  36. K.Takiguchi et al., “Dispersion compensation using a variable group-delay dispersion equalizer”, Electron. Lett., vol. 31, pp. 2192–2193, 1995.

    Article  Google Scholar 

  37. S.Kawanishi et al., “200 Gbit/s, 100 km time-division-multiplexed optical transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing”, Electron. Lett., vol. 31, pp. 816–817, 1995.

    Article  Google Scholar 

  38. K.Takiguchi et al., “Higher order dispersion equalizer of dispersion shifted fiber using a lattice-form programmable optical filter”, Electron. Lett., vol. 32, pp. 755–757, 1996.

    Article  Google Scholar 

  39. Y.Yamada et al., “Silica-based optical waveguide on terraced silicon substrate as hybrid integration platform”, Electron. Lett., vol. 29, pp. 444–445, 1993.

    Article  Google Scholar 

  40. Y.Yamada et al., “An application of a silica-on-terraced-silicon platform to hybrid Mach-Zehnder interferometric circuits consisting of silica-waveguides and LiNb03 phase-shifters”, IEEE Photonics Tech. Lett., vol. 6, pp. 822–824, 1994.

    Article  Google Scholar 

  41. Y. Tohmori et al., “Spot-size converted 1.3-/µm laser with a butt-jointed selectively grown vertically tapered waveguide”, Electron. Lett., vol. 31, pp. 1069–1070, 1995.

    Article  Google Scholar 

  42. Y. Akatsu et al., “13- µm multimode waveguide photodiodes suitable for optical hybrid integration with a planar lightwave circuit”, ECOC’95, MoB 4.4, pp. 91–94, 1995.

    Google Scholar 

  43. T.Tanaka et al., “Integrated external cavity laser composed of spot-size converted LD and uv written grating in silica waveguide on Si”, Electron. Lett., vol. 32, pp. 11202–1203, 1996.

    Google Scholar 

  44. Y.Hibino et al., “Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-lightwave-circuit-type asymmetric Mach-Zehnder interferometer on Si”, IEEE Photonics Tech. Lett., vol. 8, pp. 84–86, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London Limited

About this paper

Cite this paper

Okamoto, K. (1997). Planar Lightwave Circuits (PLCs). In: Prati, G. (eds) Photonic Networks. Springer, London. https://doi.org/10.1007/978-1-4471-0979-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0979-2_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1248-8

  • Online ISBN: 978-1-4471-0979-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics