Skip to main content

Part of the book series: Advanced Manufacturing ((ADVMANUF))

Abstract

Manufacturing systems perform many activities and operations that can be monitored and controlled at several levels of abstractions [1–3]. A modern manufacturing system has to be able to adapt to quick internal and external changes. To this end, a variety of successful models and control techniques have been developed during the last two decades, which are based on the principles and tools of information technology (IT) and management science. At the technological level the current developments in manufacturing systems stem from the advances in machine tools, robots and controllers. Both direct numerical control (DNC) and computer numerical control (CNC) use adaptive techniques to optimize machine operations, while robotic systems provide new solutions for manufacturing tasks such as material handling, assembly, welding, and spray painting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Rembold and R. Dillmann, Computer-Aided Design and Manufacturing: Methods and Tools, Springer, Berlin, 1986.

    Google Scholar 

  2. Y. Ito, Human-Intelligence-Based Manufacturing, Springer, Berlin, 1993.

    Google Scholar 

  3. R. Bernhardt, R. Dillmann, K. Hörmann and K. Tierney, Integration of Robots into CIM, Chapman & Hall, London/New York, 1992.

    Book  Google Scholar 

  4. Y. Koren, Robotics for Engineers, McGraw-Hill, New York, 1985.

    Google Scholar 

  5. G. Doumeingts, M. C. Maisonneuve, V. Brand and C. Berard, Design Methodology of Computer Integrated Manufacturing and Control of Manufacturing Units, In: U. Rembold and R. Dillmann, Computer-Aided Design and Manufacturing: Methods and Tools, Springer, Berlin, pp. 137–182, 1986.

    Google Scholar 

  6. G. Boothroyd and P. Dewhurst, Design for Assembly Handbook, University of Massachussets, Amherst, 1983.

    Google Scholar 

  7. M. M. Andreasen and T. Ahm, The Relation Between Product Design, Production of Layout and Flexibility, Proc. 7th ICAA, Zurich, 1986.

    Google Scholar 

  8. H. W. Stoll, Design for Manufacturing — An Overview, Appl. Mech. Rev., Vol. 39, No. 9, pp. 1356–1364, 1986.

    Article  Google Scholar 

  9. A. Gairola, Design for Automatic Assembly: In: H. W. Warnecke and H. J. Burlinger, eds., Factory of the Future, Springer, Berlin/New York, 1985.

    Google Scholar 

  10. T. C. Chang and R. A. Wysk, An Introduction to Automated Process Planning Systems, Prentice-Hall, Englewood Cliffs, N. J., 1985.

    Google Scholar 

  11. G. Spur and F. L. Krause, Technological Planning for Manufacturing-Methodology of Process Planning, In: Computer Aided Design and Manufacturing: Methods and Tools (U. Rembold and R. Dillmann, Springer-Verlag, New York, Chapter 3, 1986.

    Google Scholar 

  12. W. Eversheim, H. Fuchs and K. H. Zons, Anwendung des Systems AUTAP zur Arbeitsplanerstellung, Ind. Anz. H. 55: 29–33, 1980.

    Google Scholar 

  13. C. H. Link, CAM-I: Automated Process Planning System (CAPP), Tech. Paper, Dearborn, Mich., 1976.

    Google Scholar 

  14. G. Spur and E. Hein, Ergenbnisse zur recherunterstrutzten Prufplannung, Endbericht P6. 4/28;B-PRi/2, KfK-BMFT, 1981.

    Google Scholar 

  15. M.S. Dunn and S. Mann, Computerised Production Process Planning, Proc. 15th Numerical Control Society Annual Meeting, Chicago, 1978.

    Google Scholar 

  16. G. Schaffer, GT. via Automated Process Planning, Amer. Machinist, pp 119–122, May 1980.

    Google Scholar 

  17. J. Tulkoff, Lockheed’s GENPLAN, Proc. 18th Numerical Control Society Annual Meeting and Tech. Conf., Dallas, Texas, 1981.

    Google Scholar 

  18. A. Rolstadås, Scheduling Batch Production by Means of an Online Microcomputer,SINTEF Report STF17 A77064, November, 1977.

    Google Scholar 

  19. S. M. Alexander and V. Jagannathan, Computer-Aided Process Planning Systems: Current and Future Directions, Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, New York, 1983.

    Google Scholar 

  20. R. Dillmann, Computing Aids to Plan and Control Manufacturing, In: Computer-Aided Design and Manufacturing: Methods and Tools (U. Rembold and R. Dillmann eds.), Springer-Verlag, New York, Chapter 6, 1986.

    Google Scholar 

  21. T. J. Williams, Developments in Hierarchical Computer Control Systems, Proc. CAPE’83 Amsterdam, 1983.

    Google Scholar 

  22. R. Conterno, Hierarchical and Decentralized Control for Batch and Repetitive Manufacturing, Proc. 1987 IEEE Int. Conf. Robotics and Automation, Raleigh, N. C. March 30–April 3, 1987.

    Google Scholar 

  23. P. Ranky, The Design and Operation of FMS, JFS (Pubications) Ltd. and North-Holland, Amsterdam, 1983.

    Google Scholar 

  24. P. Ranky, Dymamic Simulation of Flexible Manufacturing Systems, Appl. Mech. Rev., Vol. 39(9): pp. 1339–1344, 1986a.

    Article  Google Scholar 

  25. P. Ranky, Computer-Integrated Manufacturing, Prentice-Hall, Englewood Cliffs, N. J., 1986b.

    Google Scholar 

  26. S. S. Heragu and A. Kusiak, Analysis of Expert Systems in Manufacturing Design, IEEE Trans. Syst. Man Cybern., Vol. SMC-17, pp. 898–912, 1987.

    Google Scholar 

  27. D. M. Miller and R. P. Davis, The Machine Requirements Problem, Int. J. Prod. Res. Vol. 15, pp. 219–231, 1977.

    Article  Google Scholar 

  28. A. Kusiak (Ed.), Artificial Intelligence: Computer Integrated Manufacture, IFS, Kempston, Bedford, U. K. 1987a.

    Google Scholar 

  29. A. Kusiak, The Production of Equipment Requirements Problem, Eur. J. Oper. Res. Vol. 29, pp. 229–251, 1987b.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Kusiak and S. S. Heragu, The Facility Layout Problem, Eur. J. Oper. Res. Vol. 29, pp. 229–251, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. E. Porter, Competitive Strategy, Free Press, New York, 1980.

    Google Scholar 

  32. M. E. Porter and V. E. Millar, How Information Gives You Competitive Advantage, Harvard Business Review, pp 149–159, July-August, 1985.

    Google Scholar 

  33. M. E. Porter, Competitive Advantage, Free Press, New York, 1985.

    Google Scholar 

  34. F. Warren Mc Farlan, Information Technology Changes the Way You Compete, HBR, May-June, 1984.

    Google Scholar 

  35. CIM-OSA: Reference Architecture Specification, ESPRIT Project No. 668 (AMICE Consortium), Brussels, 1988.

    Google Scholar 

  36. T. Klevers, The European Approach to an Open System Architecture for CIM, Proc. 5th CIM Europe Conference, pp 109–120, 1989.

    Google Scholar 

  37. W. Eversheim and T. Klevers, CIM-OSA Peilt Integrierende Infrastruktur, Computerwoche, No. 7, pp 18–21, Mumch, 1989.

    Google Scholar 

  38. M. Klittich, CIM-OSA: The Implementation Viewpoint, Proc. 4th CIM Europe Conference, IFS Publications/Springer, 1988.

    Google Scholar 

  39. M. Klittich, CIM-OSA and its Relationship to MAP, Proc. 5th CIM Europe Conference, pp 131–142, 1989.

    Google Scholar 

  40. MAP 3.0: Manufacturing Automation Protocol, North Amer. MAP Users Group, Ann Arbor, 1988, Also: European MAP Users Group, Cransfield, 1989.

    Google Scholar 

  41. ISO IS 9506: Manufacturing Message Specification (MMS).

    Google Scholar 

  42. ISO/IEC JTC1/SC21/WG7 No 47 Basic Reference Model of Open Disrtibuted Processing. Configuration Programming for Distributed Systems.

    Google Scholar 

  43. H. P. Godbersen, M. Matthiesen and W. Schaber, Modelling of Interorganisational Operations, Proc. Telematics’ 90, Bremen, pp 207–221, Dec. 1990.

    Google Scholar 

  44. H. J. Schneider and S. G. Tzafestas, Integrated Approach to Computer-Aided Multi-Supplier/Multi-Distributor Operations in the Autonomotive Industry, Proc. 23rd Intl. Symp. on Automotive Technology and Automation, Vol III, pp. 264–273, Vienna, Dec., 1990.

    Google Scholar 

  45. H. J. Schneider, M. Lock, M. Matthiesen and H. Rentschler, CMSO: CIM for Multi Supplier Operations, Proc. APMS’ 90: IFIP Intl. Conf. on Advances in Production Management Systems, Espoo, Finland, Aug., 1990.

    Google Scholar 

  46. CMSO-CIM for Multi-Supplier Operations, ESPRIT II Project, No. 2277, Final Report, March, 1992.

    Google Scholar 

  47. W. Schader and M. Matthiesen, The CMSO EDI Architecture for Interorganisational Operations, In: S. G. Tzafestas, ed., Engineering Systems with Intelligence, pp. 505–513, Kluwer, Dordrecht/Boston, 1991.

    Google Scholar 

  48. W. Schaber and M. Matthiesen, Interorganisational Manufacturing/Supplier Operations in the Automotive Industry, Proc. ELEDIS’ 91: Intl. Conf. on Electronic Data Interchange Systems, Milano, May, 1991.

    Google Scholar 

  49. S. G. Tzafestas and N. Konstantinidis, ENGEXP: An Integrated Environment for the Development and Application of Expert Systems in Equipment and Engine Fault Diagnosis and Repair, Advances in Engrg. Software, Vol. 14, No. 1, pp. 3–14, 1992.

    Article  Google Scholar 

  50. J. Honig and A. Vonk, Natural Language and Technical Information Systems-Problems Oriented Information Systems, T. U. Delft CMSO Working Paper, 1989.

    Google Scholar 

  51. E. Charniac and D. McDermott, Introduction to Artificial Intelligence, Addison-Wesley Reading, MA., 1985.

    Google Scholar 

  52. S. G. Tzafestas, AI Techniques in Computer-Aided Manufacturing Systems, In: H. Adeli, ed., Knowledge Engineering, Vol. II, McGraw-Hill, New York, pp. 161–212, 1990.

    Google Scholar 

  53. S. Albayrak and H. Krallmann, Distributed Artificial Intelligence in Manufacturing Control, In: S. G. Tzafestas and H. Verbruggen, Artificial Intelligence in Industrial Decision Making, Control and Automation, Kluwer, Dordrecht/Boston, pp. 247–294, 1995.

    Google Scholar 

  54. E. Post, Formal Reductions of the General Combinational Problem, American J. Mathematics, 65, pp. 197–268, 1943.

    Article  MathSciNet  MATH  Google Scholar 

  55. M. Minsky, Semantics Information, MIT Press, Cambridge, MA, 1986.

    Google Scholar 

  56. F. Puppe, Systematic Introduction to Expert Systems: Knowledge Representations and Problem Solving Methods, Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  57. B. Roberts and I. Goldstein, The FRL Primer, AI Memo 408, MIT, Cambridge, MA 1977.

    Google Scholar 

  58. L. Daniel, Artificial Intelligence: Tools, Techniques and Applications, Harper & Row, New York, 1984.

    Google Scholar 

  59. R. E. Fikes and N. J. Nillson, STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving, AI 2, pp. 189–208, 1971.

    Google Scholar 

  60. G. W. Ernst and A. Newell, GPS: A Case Study in Generality and Problem Solving, Academic Press, New York, 1969.

    Google Scholar 

  61. D. H. D. Warren, WARPLAN: A System for Generating Plans, DCL Memo 76, Dept of Al, Edinburgh Univ., 1974.

    Google Scholar 

  62. I. Bratko, Knowledge-Based Problem Solving in AL3. In: Machine Intelligence (J. Hayes, D. Michie and J. H. Pao, Eds), Harwood, Chichester, U. K., pp. 73–100, 1982.

    Google Scholar 

  63. D. E. Wilkins, Recovering from Execution Error in SIPE, Comput. Intell. J. 1, Berlin, 1986.

    Google Scholar 

  64. R. Fikes, P. Hart and N. Nillson, Learning and Executing Generalized Robot Plans, AI 3, pp. 251–288. 1973.

    Google Scholar 

  65. R. S. Michalski, J. G. Carbonell and T. Mitchell, Machine Learning, Tioga, Palo Alto, Calif, 1983.

    Google Scholar 

  66. A. Bundy, What Has Learning Got To Do with Expert Systems?, Paper No. 214, Dept. of Artificial Intelligence, Univ. of Edinburgh, 1984.

    Google Scholar 

  67. J. R. Quinlan, Discovering Rules by Induction from Collections of Examples. In: Expert Systems in Microelectronic Age (D. Michie, Ed.), Edinburgh Univ. Press, Edinburgh pp. 168–202, 1981.

    Google Scholar 

  68. B. A. Shepherd, An Appraisal of a Decision Tree Approach to Image Classification, Proc. 8th Int. Joint Conf. on Artificial Intelligence (IJCAI’ 83), Vol. 1, pp. 473–475, 1983.

    Google Scholar 

  69. R. Dechter and D. Michie, Structured Induction on Plans and Programs, IBM, Los Angeles, Calif, 1984.

    Google Scholar 

  70. B. Dufay and J. C. Latcombe, An Approach to Automatic Robot Programming Based on Inductive Learning, Int. J. Rob. Res. Vol. 3, 1987.

    Google Scholar 

  71. I. Bratko, AI Tools and Techniques for Manufacturing Systems, Robotics Comput. Integrated Manuf. Vol. 4(1/2): pp. 27–31, 1988.

    Article  Google Scholar 

  72. I. Bratko, I. Mozetik and N. Lavrac, Automatic Synthesis and Compression of Cardiological Knowledge, Machine Intelligence, Vol. 11, Oxford Universsity Press, Oxford, England, 1988.

    Google Scholar 

  73. G. Burle, The Role of Qualitative Reasoning on Modelling, Proc. IMACS Symp. on AI, Expert Systems and Languages in Modelling and Simulation, Barcelona, pp. 117–122, 1987.

    Google Scholar 

  74. R. O’Keefe, Simulation and Expert Systems. A Taxonomy and Examples, Simulation, Vol. 46(1), pp. 10–16, 1986.

    Article  Google Scholar 

  75. S. G. Tzafestas, AI Techniques in Control: An Overview. In: AI, Expert Systems and Languages in Modelling and Simulation (IMACS Proc. 1987) (C Kulikowski and G. Ferrate, Eds.), North Holland, Amsterdam, 1988a.

    Google Scholar 

  76. C. B. Mouleeswaran and H. G. Fisher, A Knowledge Based Environment for Process Planning. In: Applications of Artificial Intelligence in Engineering Problems, Vol. 2 (D. Shiram and R. Adey, Eds.), Springer-Verlag, New York, pp. 1013–1027, 1986.

    Google Scholar 

  77. C. B. Mouleeswaran, PROPLAN: A Knowledge-Based Expert System for Process Planning, MS Thesis, Univ. of Illinois, Chicago, III, 1984.

    Google Scholar 

  78. P. M. Ferreira, B. Kochar and V. Chandru, AIFIX: An Expert System Approach for Fixture Design. In: Computer-Aided/Intelligent Process Planning (C R. Liu, T. C. Chang and R. Komanduri, Eds.), ASME, N. Y., pp. 73–82, 1985.

    Google Scholar 

  79. J. R. Dixon, A. Howe, P. R. Cohen and M. K. Simmons, DOMINIC I: Progress Towards Domain Independence in Design by Iretative Redesign, Eng. Comput., Vol. 2, pp. 137–145, 1987.

    Article  Google Scholar 

  80. S. Mittal, C. L. Dym and M. Morjaria, PRIDE: An Expert Systemfor the Design of Paper Handling Systems. In: Applications of Knowledge-Based Systems to Engineering Analysis and Design (C L. Dym, Ed.), ASME AD-10, ASME, New York, 1985.

    Google Scholar 

  81. J. R. Dixon and M. R. Simmons, Expert Systems for Design: A Program of Research, ASME Conf. on Design Engineering, Cincinnati, Ohio, Paper No. 85-DET-78, 1985.

    Google Scholar 

  82. J. R. Dixon, E. C. Libardi, E. C. Luby, M. V. Vaghul and M. K. Simmons, Expert Systems for Mechanical Design: Examples of Sympolic Representations of Design Geometries. In: Applications of Knowledge-Based Systems to Engineering Analysis and Design (C L. Dym, Ed), ASME AD-10, N. Y. 1985.

    Google Scholar 

  83. J. J. Shah, Development of a Knowledge Base for an Expert System for Design of Structural Parts, Proc. 1985 ASME Int. Computers in Engineering Conf. and Exhibition, Boston, Mass, 1985.

    Google Scholar 

  84. D. C. Brown and B. Chandrasekaran, An Approach to Expert Systems for Mechanical Design, Proc. AI Trends and Applications, Gaithersburg, MD., pp. 173–180, 1983.

    Google Scholar 

  85. D. C. Brown and B. Chandrasekaran, Knowledge and Control for a Mechanical Design Expert System, Computer, Vol. 19, pp. 92–100, 1986.

    Article  Google Scholar 

  86. C. Fellenstein, C. O. Green, L. M. Palmer and D. J. Wyler, A Prototype Manufacturing Knowledge Base in Syllog, IBM Res. Develop., Vol. 29(4), pp. 413–421, 1985.

    Article  Google Scholar 

  87. A. Walker, Syllog: An Approach to Prolog for Nonprogrammers. In: Logic Programming and Its Applications (M, van Caneghem and D. H. D. Warren, Eds.). Ablex, Norwood, N. J., 1985.

    Google Scholar 

  88. Y. Descotte and J. C. Latombe, GARI: An Expert System for Process Planning. Solid Modelling for Computers: From Theory to Applications, New York, 1984.

    Google Scholar 

  89. K. Matsushima, N. Okada and T. Sata, The Integration of CAD and CIM by Application of Artificial Intelligence Techniques. In: Manufacturing Technology. Techn. Rundschan, Berne, Switzerland, 1982.

    Google Scholar 

  90. H. R. Berenji and B. Khoshnevis, Use of Artificial Intelligence in Automated Process Planning, Comput. Mech. Eng., pp. 47–55, 1986.

    Google Scholar 

  91. I. Darbyshire and E. J. Davies, EXCAP-An Expert System Approach to Recursive Process Planning, Proc. 16th CIRP Int. Seminar of Manufacturing Systems, Tokyo, 1984.

    Google Scholar 

  92. A. Sluga, P. Butala, N. Lavrac and M. Gams, An Attempt to Implement Expert Systems Techniques in CAPP, Robotics Integrated Manuf, Vol. 4(1/2), pp. 77–82, 1988.

    Article  Google Scholar 

  93. D. S. Nau and T. C. Chang, A Knowledge Based Approach to Generative Process Planning, In: C R. Liu, T. C. Chang and R. Comanduri, eds., Computer-Aided Intelligent Process Planning, ASME Publ., New York, pp. 65–71, 1985.

    Google Scholar 

  94. V. R. Milacic and M. Urosevic, SAPT-Knowledge-Based CAPP System, Robotics Comput Integrated Manuf., Vol. 4(1/2), pp. 69–76, 1988.

    Article  Google Scholar 

  95. K. Preiss and E. Kaplanski, Solving CAD/CAM Problems by Heuristic Programming, Comput. Mech. Eng., Vol. 2(2), pp. 56–60, 1983.

    Google Scholar 

  96. D. A. Bourne and M. S. Fox, Autonomous Manufacturing: Automating Job-Shop, Computer, Vol. 17(9), pp. 79–86, 1984.

    Google Scholar 

  97. J. Vancza, Organizing Classificatory Knowledge by Induction: A Case Study in Manufacturing Process Planning, Proc. 12th IMACS World Congress, Vol. 4, pp. 258–260, 1988.

    Google Scholar 

  98. F. Gliviak, J. Kubis, A. Milovsky and E. Karabinosova, A Manufacturing Cell Management System: CEMAS. In: Artificial Intelligence and Information: Control Systems of Robots (I. Plander, Ed.), North Holland, Amsterdam, 1984.

    Google Scholar 

  99. K. Svenes, An Application of a Parallel Systems Planning Language in Decision Support-Production Scheduling, In: Advances in Production Management:Production Management Systems in the Eighties, Proc. IFIP WG 5.7 Working Conf., Bordeaux, France, pp. 241–249, 1982.

    Google Scholar 

  100. M. S. Fox ans S. F. Smith, ISIS: A Knowledge-Based System for factory Scheduling, Expert Syst., Vol. 1, pp. 25–49, 1984.

    Article  Google Scholar 

  101. G. Bruno and G. Marchetto, Process-Translatable Petri Nets for the Rapid Prototyping of Process control Systems, IEEE Trans. Software Eng, Vol. SE-12(2), 1986.

    Google Scholar 

  102. F. G. Mill and S. Spraggett, An Artificial Intelligence Approach to Process Planning and Scheduling for Flexible Manufacturing Systems, Proc. Int. Conf. Computer-Aided Engineering, IEE, London, 1984.

    Google Scholar 

  103. M. Litt, J. C. H. Chung, D. C. Bond and G. G. Keininger, A Scheduling and Planning Expert System for Multiple Furnaces, Eng. Appl. AI 1 (March), pp. 16–21, 1988.

    Google Scholar 

  104. G. Boothroyd and P. Dewhurst, Computer Aided Design for Assembly, Assembly Eng., Vol. 26(2), pp. 18–22, 1983.

    Google Scholar 

  105. G. Boothroyd and P. Dewhurst, Design for Assembly-A Designers Handbook, University of Massachusetts, Amherst, Mass, 1984.

    Google Scholar 

  106. D. De Winter and H. Van Brussel, An Expert System for Flexible Assembly System Design, Proc. 8th Annual British Robot Association Conf., Birmingham, U.K., pp. 133–142, 1985.

    Google Scholar 

  107. W. Jozewicz and A. Urbanski, Expert Systems and Automatic Component Assembling in CAD, Proc. Int. Conf. on Computer-Aided Engineering, IEE, London, U.K., 1984.

    Google Scholar 

  108. K. Lee and D. C. Gossard, A Hierarchical Data Structure for Representing Assemplies: Part I, Comput. Aided Design, Vol. 17(1), pp. 15–24, 1985.

    Article  Google Scholar 

  109. A. P. Ambler, H. G. Barrow, C. M. Brown, R. M. Burstall and R. J. Popplestone, A Versatile System for Computer-Controlled Assembly, AI 6, pp. 129–156, 1975.

    Google Scholar 

  110. A. C. Kack, K. L. Boyer, C. H. Chen, R. J. Safranec and H. S. Yang, A Knowledge-Based Robotic Assembly Cell, IEEE Expert, pp. 64–83, 1986.

    Google Scholar 

  111. K. H. Chang and W. G. Wee, A Knowledge-Based Planning System for a Mechanical Assembly Using Robots, IEEE Expert, pp. 18–30, Spring, 1988.

    Google Scholar 

  112. H. B. Farber and E. L. Fisher, MATHES: Material Handling Equipment Selection Expert System, NCSU-IE, Tech. Report 85-16, North Carolina State Univ., Raleigh, NC, 1985.

    Google Scholar 

  113. C. J. Malmborg, M. H. Agee, G. R. Simons and V. J. Choudhry, Selection of Material Handling Equipment Alternatives for CIM Systems Using AI, Ind. Eng., Vol. 19 (May), pp. 58–64, 1987.

    Google Scholar 

  114. J. M. McGlennon, G. Cassidy and J. Browne, ROBOSPEC: A Prototype Expert System for Robot Selection, In: Artificial Intelligence: Computer Integrated Manufacturing (A. Kusiak, Ed.), IFS, Kempston, Bedford, U.K., 1987.

    Google Scholar 

  115. S. G. Tzafestas and G. Tsihrintzis, ROBBAS: An Expert System for Choise of Robots, In: Managerial Decision Support Systems and Knowledge-Based Systems (M Singh and D. Salassa, Ed.), Elsevier/North-Holland, Amsterdam, 1988.

    Google Scholar 

  116. E. L. Fisher and O.Z. Maimon, Integer and Rule Programming Models for Specification and Selection of Robots, In: Artificial Intelligence: Computer Integrated Manufacturing (A. Kusiak, Ed.), IFS, Kempston, Bedford, U.K., 1987.

    Google Scholar 

  117. T. J. Doll, An Expert System for Selecting Sensors and Grippers for Robot Applications, Proc. 12th IMACS World Congress, Paris, pp. 412–414, 1988.

    Google Scholar 

  118. G. A. Fleisher, Economic Justification of Automation, Proc. 24th IEEE Conf on Decision and Control, Ft. Lauderdale, USA, pp. 1978–1983, 1985.

    Google Scholar 

  119. Industrial Robots: A Summary and Forecast, Naperville, IL: Tech. Tran. Corporation, 1983.

    Google Scholar 

  120. G. A. Fleisher, A Generalized Methodology for Asserting the Economic Consequence of Acquiring Robots for Repetitive Operations, Proc. AIIE Conference, pp. 130–139, 1982.

    Google Scholar 

  121. F. Leimkuhler, Economic Analysis of Computer Integrated Manufacturing Systems, In: U. Rembold and R. Dillmann, Computer-Aided Design and Manufacturing: Methods and Tools, Springer, Berlin, pp. 401–444, 1986.

    Google Scholar 

  122. R. E. Gustavson, Engineering Economics Applied to Investments in Automation, Proc. 2nd Intl. Conf. on Assembly Autom., Brighton, U.K., 1981.

    Google Scholar 

  123. Z. J. Chzajkiewicz, Justification of the Robots Applications, Flexible Manufacturing Systems: Methods and Studies, North-Holland/Elsevier, Amsterdam, 1986.

    Google Scholar 

  124. K. J. Meyer, A Cookbook Approach to Robotics and Automation Justification, Proc. Robot 4th Conf., pp. 21–50, 1982.

    Google Scholar 

  125. T. Jordanides and B. Torby, Expert Systems and Robotics, Springer, Berlin/New York, 1991.

    MATH  Google Scholar 

  126. S. G. Tzafestas, Engineering Systems with Intelligence: Concepts, Tools and Applications, Kluwer, Dordrecht/Boston, 1991.

    Google Scholar 

  127. S. G. Tzafestas, Expert Systems in Engineering Applications, Springer, Berlin\N.Y., 1993.

    MATH  Google Scholar 

  128. S. G. Tzafestas and H. B. Verbruggen, Artificial Intelligence in Industrial Decision Making, Control and Automation, Kluwer, Dordrecht/Boston, 1995.

    MATH  Google Scholar 

  129. C. Gamman and D. A. Nadler, Fit Control Systems to your Managerial Style, Hansard Business Review, pp. 65–72, Jan.-Feb., 1976.

    Google Scholar 

  130. S. G. Tzafestas and C. Athanassiou, A New Class of Petri Nets for Fast Robot Cell Prototyping, CC-AI: Communication and Cognition-Artificial Intelligence, Vol. 12(3), pp. 225–252, 1995.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tzafestas, S.G. (1997). Modern Manufacturing Systems: An Information Technology Perspective. In: Tzafestas, S.G. (eds) Computer-Assisted Management and Control of Manufacturing Systems. Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-4471-0959-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0959-4_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-76110-5

  • Online ISBN: 978-1-4471-0959-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics