Skip to main content

The N-SOBoS model

  • Conference paper
Neural Nets WIRN Vietri-99

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

Abstract

The purpose of this work is to outline a computational architecture for the intelligent processing of sensorimotor patterns. The focus is on the nature of the internal representations of the outside world which are necessary for planning and other goal-oriented functions. A model named N-SOBoS (new self-organizing body-schema), based on the SOBoS model [10] and on the dual Extended Topology Representing Network architecture is proposed, which integrates a number of concepts and methods partly explored in the field [15, 11, 12]. The novelty and the biological plausibility is related to the global architecture which allows to deal with sensorimotor patterns in a coordinate-free way, using population codes as internal representations and communication channels among different cortical maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Decety and D.H. Ingvar. Brain structures partecipating in mental simulation of motor behavior: a neuropsychological interpretation. Acta Psychologica, 73:13–34, 1990.

    Article  Google Scholar 

  2. J. Decuyper and D. Keymeulen. A reactive robot navigation system based on a fluid dynamics metaphor. In Hans-Paul Schwefel and Reinhard Maenner, editors, Parallel Problem Solving from Nature, pages 348–355. Springer, 1991.

    Google Scholar 

  3. F. Frisone and P.G. Morasso. Extending the TRN model in a biologically plausible way. In ICANN97-Int. Conf. on Artificial Neural Networks, pages 201–206, Lousanne, October 1997. Springer.

    Google Scholar 

  4. P. Gaudiano and S. S. Grossberg. Vector associative maps: unsupervised real-time error-based learning and control of movement trajectories. Neural Networks, 4:147–183, 1991.

    Article  Google Scholar 

  5. E. I. Knudsen, S. du Lac, and S.D. Esterly. Computational maps in the brain. Annual Review of Neuroscience, 10:41–65, 1987.

    Article  Google Scholar 

  6. M. Kuperstein and J. Rubinstein. Implementation of an adaptive neural controller for sensory-motor coordination. In R. Pfeifer, Z. Schreter, F. Fogelman-Soulie, and L. Steels, editors, Connectionism in Perspective, pages 49–61. Elsevier Science Publishers, Amsterdam, 1989.

    Google Scholar 

  7. T. Martinetz and K. Schulten. A’ Neural-Gas’ network learns topologies. In T. Kohonen, K. Makisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks, Amsterdam, 1991. North-Holland.

    Google Scholar 

  8. T. Martinetz and K. Schulten. Topology Representing Networks. Neural Networks, 3:507–522, 1994.

    Article  Google Scholar 

  9. P. Morasso and V. Sanguineti. Neurocomputing concepts in motor control. In J. Paillard, editor, Brain and Space, pages 404–432. University Press, Oxford, UK, 1991.

    Google Scholar 

  10. P. Morasso and V. Sanguineti. Self-organizing body-schema for motor planning. Journal of Motor Behavior, 26:131–148, 1993.

    Google Scholar 

  11. P. Morasso and V. Sanguineti. Kinematic invariances and body schema. Behavioral and Brain Sciences, 18:769–770, 1995.

    Article  Google Scholar 

  12. P. Morasso and V. Sanguineti. How the brain can discover the existence of external egocentric space. Neurocomputing, 12:289–310, 1996.

    Article  MATH  Google Scholar 

  13. F. A. Mussa Ivaldi, P. Morasso, and R. Zaccaria. Kinematic networks-A distributed model for representing and regularizing motor redundancy. Biological Cybernetics, 60:1–16, 1988.

    Google Scholar 

  14. H. Ritter, T. Martinetz, and K. Schulten. Topology conserving maps for learning visuo-motor coordination. Neural Networks, 2:159–168, 1989.

    Article  Google Scholar 

  15. V. Sanguineti, T. Tsuji, and P. Morasso. A dynamical model for the generation of curved trajectories. In S. Gielen and B. Kappen, editors, International Conference on Artificial Neural Networks, pages 115–118, London, 1993. Springer.

    Google Scholar 

  16. R.N. Shepard and L.A. Cooper. Mental Images and their transformations. MIT Press, Cambridge, MA, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Frisone, F., Morasso, P.G. (1999). The N-SOBoS model. In: Marinaro, M., Tagliaferri, R. (eds) Neural Nets WIRN Vietri-99. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0877-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0877-1_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1226-6

  • Online ISBN: 978-1-4471-0877-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics