Skip to main content

Computational Intelligence in Hydroinformatics: A Review

  • Conference paper
Neural Nets WIRN Vietri-99

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

  • 183 Accesses

Abstract

Hydroinformatics is the field of study of the flow of information and its processing by knowledge as applied to the flow of fluids and their interaction with the aquatic environment. Many new modeling techniques have been entered in Hydroinformatics successfully. Among them, the application Computational Intelligence methods in Hydroinformatics is a relatively new area of research, even if some successful results have been already obtained. In this review we present a general overview of the applications of Computational Intelligence methods to Hydroinformatics and analyze some promising cases study concerning, namely, estimation of sanitary flows, rainfall prediction, unit hydrograph estimation, groundwater monitoring, flood waves propagation, and pump scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASCE Task Committee on Geostatistical Techniques in Geohydrology of the Ground Water Hydrology. Review of Geostatistics in Geohydrology, ii: Applications. Journal of Hydraulic Engineering, 116(5):633–658, 1990.

    Article  Google Scholar 

  2. H.D.I. Abarbanel. The analysis of observed chaotic data in physical systems. Reviews of Modern Physics, 65(4):1331–1392, 1993.

    Article  MathSciNet  Google Scholar 

  3. H.D.I. Abarbanel. Analysis of Observed Chaotic Data. Springer, New York, USA, 1996.

    Book  MATH  Google Scholar 

  4. R. Abrahart. Neural networks and the problem of accumulated error: an embedded solution that offers new opportunities for modelling and testing. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  5. V. Babovic and L.C. Larsen. A data mining approach to time series modelling and forecasting. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  6. V. Babovic and L.C. Larsen (Eds.). Hydroinformatics’ 98 — Proceedings of the third international conference. Balkema, Rotterdam, 1998.

    Google Scholar 

  7. T. Baeck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithm. Oxford University Press, 1996.

    Google Scholar 

  8. C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

    Google Scholar 

  9. O. Blanpain, F. Boussemart, C. Lecoutre, and S. Merchez. Genetic algorithms to determine the profile of urban drainage networks from incomplete data. In V. Babovic and L.C. Larsen, editors, Hydro informatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  10. I Bogardi and A. Bardossy. Fuzzy sets geostatistics: Research needs. In Proc. of Recent Developments and Applications in Surface and Subsurface Hydrology, pages 80–90, Karlsruhe, 1990.

    Google Scholar 

  11. H. van den Boogaard, S. Ali, and A.E. Mynett. Self organizing feature maps for the analysis of hydrological and ecological data sets”. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  12. H. van den Boogaard, D.K. Gautam, and A.E. Mynett. Auto-regressive neural networks for the modelling of time series. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  13. G.E.P. Box and G.M. Jenkins. Time Series Analysis Forecasting and Control. Holden-Day, S. Francisco, 1970.

    MATH  Google Scholar 

  14. R Brause. Neurale Netze. Teubner, Stuttgart, 1995.

    Google Scholar 

  15. A. Breitscheidel, J. Cser, and P. van der Veer. Applicability of neural networks in hybrid water models. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  16. V. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory, and Methods. J. Wiley and Cons, Inc., New York, 1988.

    Google Scholar 

  17. Gb. Cicioni and F Masulli. Approccio alla previsione di altezze pluviometriche basato su analisi di componenti principali e sistemi fuzzy adattivi. In Atti XXVI Convegno di Idraulica e Costruzioni Idrauliche — Catania), volume IV, pages 27–38. CUECM, Catania (Italy), 1998.

    Google Scholar 

  18. Gb. Cicioni and F. Masulli. Forecasting discontinuous signals using singular spectrum analysis and neural networks. In Proceedings of NEU99-FINANCIAL APPLICATIONS OF NEURAL NETS AND FUZZY SYSTEMS, 1999. (invited paper — in press).

    Google Scholar 

  19. J.A. Cunge. On the subject of a flood propagation method (muskingum method). Journal of Hydraulic Research, IAHR, 7:205–230, 1969.

    Article  Google Scholar 

  20. G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control Signals, and Systems, 2:303–314, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  21. V. D’Agostino, G. Passarella, and M. Vurro. Supporto alla decisione basato sulla geostatistica fuzzy: ottimizzazione di reti di monitoraggio delle acque sotterranee. In Atti del XXVI Convegno di Idraulica e Costruzioni IdraulicheCatania, volume IV, pages 39–51, Catania (Italy), 1998. CUECM Editore.

    Google Scholar 

  22. Y. Djebbar and Y. Alila. Neural network estimation of sanitary flows. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  23. P.A. Dowd. The variogram and kriging: Robust and resistent estimators. In Geostatistics for Natural Resources Characterization, pages 91–106, Amsterdam, 1984. Reidel.

    Google Scholar 

  24. D. Duband, C. Obled, and J.Y. Rodriguez. Unit hydrograph revisited: An alternate iterative approach to UH and effective precipitation identification. Journal of Hydrology, 150:115–149, 1993.

    Article  Google Scholar 

  25. G. Fiorillo. Modellazione della propagazione delle onde di piena con reti neurali artificiali. In Atti del XXVI Convegno di Idraulica e Costruzioni Idrauliche — Catania, volume IV, pages 65–76, Catania (Italy), 1998. CUECM Editore.

    Google Scholar 

  26. I. Fulop, J. Jozsa, and T. Kramer. A neural network application in estimating wind induced shallow lake motions. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998.

    Google Scholar 

  27. D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, 1989.

    MATH  Google Scholar 

  28. M. J. Hall and A. Minns. Regional flood frequency analysis using artificial neural networks. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  29. W. S. Hanisch, E. C. Pires, and de Carvalho A. A neural network model for predicting operational parameters of a wastewater treatment plant. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  30. S. Haykin. Neural Networks. A Comprehensive Foundation. Macmillan College Publishing, New York, 1994.

    MATH  Google Scholar 

  31. M. Khondker, G. Wilson, and A. Klinting. Application of artificial neural network in real time flash flood forecasting. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  32. J. Kim and C. H. Hahm. Hydrologic forecasting by artificial neural network with time series model structure. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  33. J. Kim, B. Park, and H. Cha. Parameters estimation of storage function model with genetic algorithms. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  34. G.J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River, New Jersey, 1995.

    MATH  Google Scholar 

  35. R. Kumaresan and D.W. Tuffs. Data-adaptive principal component signal processing. In IEEE Proc. Conf. on Decision and Control, page 949, Albuquerque, USA, 1980. IEEE.

    Google Scholar 

  36. N. Lange. Advantages of unit hydrograph derivation by neural networks. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  37. S.I. Lee and P.K. Kitadinis. Optimization of minitoring well installation time and location dusring aquifer decontamiation”. Water Resources Research, 10:439–462, 1996.

    Google Scholar 

  38. F. Lisi, O. Nicolis, and M. Sandri. Combining Singular-Spectrum Analysis and neural networks for time series forecasting. Neural Computation, 2:6–10, 1995.

    Google Scholar 

  39. C. Liu and S. Lin. Artificial neural network forecasting for chaotic dynamical process in hydrology. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  40. K.C. Luk, J. E. Ball, and A. Sharma. Rainfall forecasting through artificial neural network. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  41. R. Mañé. On the dimension of the compact invariant sets of certain nonlinear maps. In D.A. Rand and L.-S. Young, editors, Dynamical Systems and Turbulence, volume 898 of Lecture Notes in Mathematics, pages 230–242, Warwick 1980, 1981. Springer-Verlag, Berlin.

    Google Scholar 

  42. M. Manic and J. Muskatirovic. Selection of optimum solution for water supply in fuzzy decision environment. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  43. I. Nalbantis, C. Obled, and J.Y. RODRIGUES. Unit hydrograph and effective precipitation identification. Journal of Hydrology, 168:127–157, 1995.

    Article  Google Scholar 

  44. R. Parenti, F. Masulli, and L. Studer. Control of non-linear process by neural networks: Benefits using the Takens-Mañé theorem. In Proceedings of the ICSC Symposium on Intelligent Industrial Automation, IIA’ 97, pages 44–50, Millet, Canada, 1997. ICSC.

    Google Scholar 

  45. E.R. Pike, J.G. McWhirter, M. Bertero, and C. deMol. Generalized information theory for inverse problems in signal processing. IEE Proceedings, 59:660–667, 1984.

    MathSciNet  Google Scholar 

  46. Proceedings of XXVI Convegno di Idraulica e Costruzioni Idrauliche-Catania. CUECM Editore, Catania (Italy), 1998.

    Google Scholar 

  47. D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations by error propagation. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing, volume 1, chapter 8, pages 318–362. MIT Press, Cambridge, 1986.

    Google Scholar 

  48. de W. Schaetzen, D. Savic, and G.A. Walters. A genetic algorithm approach to pump scheduling in water supply systems. In V. Babovic and L.C. Larsen, editors, Hydro-informatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  49. L. See and S. Openshaw. Using soft computing techniques to enhance flood forecasting on the river ouse. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  50. Sherman. In Ve Te Chow and L.W. Maidment, D.R. anmd Mays, editors, Applied Hydrology, pages 261–265, New York, 1988. McGraw-Hill.

    Google Scholar 

  51. M. Stanic, Z. Kapelan, and D. Avakumovic. Evolutionary algorithm for determining optimal tree layout of water distribution networks. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  52. L. Studer and F. Masulli. Building a neuro-fuzzy system to efficiently forecast chaotic time series. Nuclear Instruments and Methods in Physics Resesarch, Section A, 389:264–667, 1997.

    Article  Google Scholar 

  53. M. Stundner and G. Zangl. Computational intelligence tools for groundwater management. In V. Babovic and L.C. Larsen, editors, Hydroinformatics’ 98 — Proceedings of the third international conference, Copenhagen, 1998. Balkema.

    Google Scholar 

  54. F. Takens. Detecting strange attractors in turbulence. In D.A. Rand and L.-S. Young, editors, Dynamical Systems and Turbulence, volume 898 of Lecture Notes in Mathematics, pages 366–381, Warwick, 1981. Springer-Verlag, Berlin.

    Google Scholar 

  55. C. W. Therrien. Decision, Estimation, and Classification: An Introduction to Pattern Recognition and Related Topics. Wiley, New York, 1989.

    MATH  Google Scholar 

  56. V. N. Vapnik. Statistical Learning Theory: Inference from Small Samples. Springer, New York, 1998.

    Google Scholar 

  57. R. Vautard, P. You, and M. Ghil. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58:95–126, 1992.

    Article  Google Scholar 

  58. L. Wang and J.M. Mendel. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. on Neural Networks, 5:807–814, 1992.

    Article  Google Scholar 

  59. A. Zell, G. Marnier, N. Mache, R. Hubner, S. Doring, K.U. Herrman, T. Soyez, M. Schmalzl, T. Sommer, A. Hatzigeorgiou, D. Posselt, T. Schreiner, B. Kett, G. Clemente, and J. Wieland. SNNS Stuttgart Neural Networks Simulator, User Manual, Version 4.1. Technical Report Report No. 6/95, Stuttgart University, Stuttgart, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Cicioni, G., Masulli, F. (1999). Computational Intelligence in Hydroinformatics: A Review. In: Marinaro, M., Tagliaferri, R. (eds) Neural Nets WIRN Vietri-99. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0877-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0877-1_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1226-6

  • Online ISBN: 978-1-4471-0877-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics