Skip to main content

Simple Reverberations and the Mind

  • Conference paper
Neural Nets WIRN Vietri-99

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

  • 171 Accesses

Abstract

The manner in which simple reverberations may be used to explain higher-order cognitive processes is developed from the ideas of Caianiello on reverberations [1]. In Part I, a preliminary description is given as to how such reverberations can be created, held and annihilated in a controlled manner. A discussion is then given, in Part II, of the nature of, and problems associated with, modelling the frontal lobes. In particular the manner they may be used to learn and generate temporal sequences — involving the manipulation of reverberations — is studied as part of analysis of working memory. An earlier model, that of ‘crumbling histories’, is reviewed, and problems it contains considered. A simplified model of the architecture of the frontal lobes, the ACTION network, is then considered. This in its turn is applied to study the task of temporal sequence storage and generation. A hard-wired version of the ACTION network and the representative dynamics of some of its neurons is shown. We then analyse the manner in which the model is affected by damage corresponding to loss of dopamine. A further section analyses the essential neural activity of creation and annihilation of multi-neuron reverberations in these simulations by bifurcation methods. Part III then considers how simple reverberations are relevant in the posterior cortex to support the emergence of consciousness and reaches the conclusion that this takes place in the inferior parietal lobes. Part IV gives conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Caianiello ER. Outline of a Theory of Thinking Machines and Thought Processes. Journal of Theoretical Biology 2:204

    Google Scholar 

  2. Singer W & Gray CM (1995) Visual feature integration and the temporal lobe correlation hypothesis. Ann Rev Neuroscience 18:555–586.

    Article  Google Scholar 

  3. Goldman-Rakic P (1996) Regional and cellular fractionation of working memory. Proc Natl Acad Sci USA 93:13474–13480

    Google Scholar 

  4. Callicott JH, Mattay VS, Bertolino A, Finn K, Coppola R, Frank JA, Gdlberg TE & Weinbergere DR (1999) Cerebral Cortex 9:20–26.

    Article  Google Scholar 

  5. Baddeley A (1986) Working Memory. Oxford: Oxford University Press.

    Google Scholar 

  6. Taylor JG & Alavi FN (1996). In J. Sirosh, R. Miikulainen & Y. Choe (eds). Lateral Interactions in Cortex: Structure and Function. At http:www.cs.utexas.edu/users/nn/web-pubs/htmlbook96.

    Google Scholar 

  7. Nakahara H & Doya K (1998) Near-Saddle-Node Bifurcation Behaviour as Dynamics in Working Memory for Goal-Directed Behaviour. Neural Computation 10:113–132.

    Article  Google Scholar 

  8. Contreras-Vidal JL & Stelmach GE (1995). Biological Cybernetics 73: 467–476.

    Article  MATH  Google Scholar 

  9. Taylor JG (1995). Proc ICANN’95, Soulie F. and Gallinari P. (eds), Ec2 amp; Co, Paris, pp 543–548.

    Google Scholar 

  10. Taylor JG & Taylor NR (1998a). Biological Cybernetics (submitted).

    Google Scholar 

  11. Taylor NR & Taylor JG (1998b). Humphreys GW., Olson A,. Heinke D. (eds), Proc NCPW5, Springer-Verlag, pp 92–101

    Google Scholar 

  12. Taylor NR & Taylor JG (1999). To appear in Neural Networks.

    Google Scholar 

  13. Taylor NR (1998). PhD thesis, King’s College London, London.

    Google Scholar 

  14. Monchi O & Taylor JG (1997). In: Bullinaria JA, Glasspool DW, Houghton G (eds) Connectionists Representations, Springer, London, pp 142–154.

    Google Scholar 

  15. DeLong MR (1990). Trends in Neuroscience 13: 281–285

    Article  Google Scholar 

  16. Reiss M & Taylor JG (1991) Storing Temporal Sequences. Neural Networks 4:773–787.

    Article  Google Scholar 

  17. Tanji J & Shima K (1994). Nature 371: 413–416.

    Article  Google Scholar 

  18. Halsband U, Matsuzaka Y & Tanji J (1994) Neuroscience Research 20: 149–155

    Article  Google Scholar 

  19. Chappell GJ & Taylor JG (1993) The Temporal Kohonen Map. Neural Networks 6:441–446.

    Article  Google Scholar 

  20. Kohonen T (1988) Associative Memories. Berlin: Springer.

    Google Scholar 

  21. Varsta M, Millan J del R. & Heikkonen (1997) A Recurrent Self-Organizing Map for Temporal Sequence Processing. pp 421–426 in Artifical Neural Networks-ICANN’97, W Gerstner, A Germond, M Hasler & J-D Nicoud (eds). Lecture Notes in Computer Science 1327. Berlin: Springer.

    Google Scholar 

  22. Taylor JG (1990) On the Capacity of Neural Nets for Temporal Patterns. Int. J. Neural Systems 2:47–54.

    Article  Google Scholar 

  23. Shallice T (1988) From Neuropsychology to Mental Structure. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  24. Mesulam M-M (1998). Brain 121: 1013–1052

    Article  Google Scholar 

  25. Passingham RE (1993) The frontal lobes and voluntary action. OUP, Oxford.

    Google Scholar 

  26. Passingham RE (1987) In Motor Areas of the Cerebral Cortex, Ciba Foundation Symposium 132. John Wiley, Chichester, pp 151–164.

    Google Scholar 

  27. Bergman T, Wichmann H, Karmin B & DeLong MR (1994). J. Neurophysiology 72: 507–520

    Google Scholar 

  28. Taylor JG (1999) The Race for Consciousness. Cambridge: MIT Press.

    Google Scholar 

  29. Pollen D (1999) On the Neural Correlates of Visual Perception. Cerebral Cortex 9:4–19

    Article  Google Scholar 

  30. Crick FHC & Koch C (1998) Consciousness and neuroscience. Cerebral Cortex 8:97–107

    Article  Google Scholar 

  31. Moutuoussis K and Zeki S (1997) Functional segregation and temporal hierarchy of the visual perceptive systems. Proc R Soc Lond B 264:1407–1414

    Article  Google Scholar 

  32. Tanaka K (1996) Inferotemporal Cortex and Object Vision. Ann. Rev. of Neurosci. 19:109–139.

    Article  Google Scholar 

  33. Milner AD & Goodale MA (1995) The Visual Brain in Action. Oxford: Oxford University Press.

    Google Scholar 

  34. Damasio A (199) Descartes Error. Cambridge: Cambridge University Press.

    Google Scholar 

  35. Karnath H-O (1997) Neural encoding of space in egocentric coordinates? Evidence for and limits of a hypothesis derived from patients with parietal lesions and neglect. pp 497–520 in Parietal Lobe: Contributions to Orientation in 3D Space. P Thier & H-O Karnath (eds). Heidelberg: Springer

    Google Scholar 

  36. Milner AD (1997) Neglect, Extinction and the Cortical Streams of Visual Processing. pp 3–22 in Parietal Lobe: Contributions to Orientation in 3D Space. P Thier & H-O Karnath (eds). Heidelberg: Springer

    Google Scholar 

  37. Jonides J & Smith EE (1997) The architecture of working memory. ch 8, pp 243–276 in Cognitive Neuroscience, MD Rugg (ed). Hove, East Sussex: Taylor & Francis.

    Google Scholar 

  38. Coull JT and Nobre AC (1998) Where and When to Pay Attention: The Neural Systems for Directing Attention to Spatial Locations and to Time Intervals as revealed by Both PET and fMRI. J Neuroscience 18:7426–7435

    Google Scholar 

  39. Schmitz N, Taylor JG, Shah NJ, Ziemons K, Grosse-Ruykin M & Mueller-Gaertner H-W (1998) Brain Activation in the Motion After-Effect. Neuroscience abstracts 695.3, Soc for Neuroscience 24:1762

    Google Scholar 

  40. Tootell RBH, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ & Rosen BR (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375:139–141

    Article  Google Scholar 

  41. Libet B, Alberts WW, Wright EW, DeLattre LD, Levin G & Feinsein B (1964) Production of threshold levels of conscious sensation by electrical stimulation of human somatosensory cortex. J Neurophysiol. 27:546–578

    Google Scholar 

  42. Taylor JG (1996) A competition for consciousness? Neurocomputing 11:271–296

    Article  MATH  Google Scholar 

  43. Bermduez JL, Marcel AJ & Eilan N (1995) The Body and the Self. Cambridge MA: MIT Press

    Google Scholar 

  44. Taylor JG (1996) Breakthrough to awareness. Biol Cybern. 25:59–72

    Article  Google Scholar 

  45. Stein J (1992) The representation of egocentric space in the posterior parietal lobe. Behav. Brain sci. 15:691–700

    Google Scholar 

  46. Izquierda I, Quillfield JA, Zanatta MS, Quevedo J, Schaeffer E, Schmitz PK & Medina JH (1997) Sequential Role of Hippocampus and Amygdala, Entorhinal Cortex and Parietal Cortex in Formation and Retrieval of memory for Inhibitory Avoidance in rats. Europ J Neuroscience 9:786–793 (1997)

    Article  Google Scholar 

  47. Hastings S & Taylor JG (1994) Modelling the Articulatory Loop. pp 1452–1455 in vol 2 of Proc Int. Conf. Neural Networks ICANN’94, Marinaro M and Morasso P (eds). Berlin: Springer.

    Google Scholar 

  48. Kalaska J, Scott SH, Cisek P & Sergio LE (1997) Cortical control of reaching movements. Current Opinion in Neurobiology. 7:849–859

    Article  Google Scholar 

  49. Mesulam M (1985) Attention, Confusional States amd Neglect. Ch 3, pp 125–168 in Principles of Neurobiology. MM Mesulam (ed). Philadelphia: FA Davis Co.

    Google Scholar 

  50. Taylor JG & Alavi F (1995) A global competitive neural network. Biol. Cybern. 72:233–248

    Article  MATH  Google Scholar 

  51. Posner MI, Walker JA, Friedrich FA & Rafal RD (1987) How do the Parietal Lobes Direct Covert Attention? Neuropsychologia 25:135–145

    Article  Google Scholar 

  52. Marcel AJ (1980) Conscious and preconsious recognition on polysemous words: locating the selective effects of prior verbal contexts. In Attention and Performance VIII, RS Nickerson (ed). Hillsdale NJ:L awrence Erlbaum

    Google Scholar 

  53. Triesman A (1988) Features and Objects: The fourteenth Bartlett Memorial Lecture. Quart. Journ. Experiment. Psych. 40A:201–237

    Google Scholar 

  54. Henderson JM (1994) Two Representational Systems in Dynamic Visual Identification. J Exper Psych.: Gen 20:410–426

    Article  Google Scholar 

  55. Taylor JG (1999) Neural Networks for Consciousness: The Central Representation. To appear in Proc Int. Joint Conference on Neural Networks (IJCNN’99). Hillsdale NJ: Erlbaum

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Taylor, J.G., Taylor, N. (1999). Simple Reverberations and the Mind. In: Marinaro, M., Tagliaferri, R. (eds) Neural Nets WIRN Vietri-99. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0877-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0877-1_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1226-6

  • Online ISBN: 978-1-4471-0877-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics