Skip to main content

Local Effective Hölder Exponent Estimation on the Wavelet Transform Maxima Tree

  • Conference paper
Fractals

Abstract

We present a robust method of estimating an effective Hölder exponent locally at an arbitrary resolution. The method is motivated by the multiplicative cascade paradigm, and implemented on the hierarchy of singularities revealed with the wavelet transform modulus maxima tree. In addition, we illustrate the possibility of the direct estimation of the scaling spectrum of the effective Hölder exponent, and we link it to the established partition functions based multifractal formalism. We motivate both the local and the global multifractal analysis by showing examples of computer generated and real life time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Arneodo, E. Bacry and J.F. Muzy (1991): Wavelets and Multifractal Formalism for Singular Signals: Application to Turbulence Data. PRL, 67, No 25, 3515–3518.

    Article  Google Scholar 

  2. A. Arneodo, E. Bacry and J.F. Muzy (1995): The Thermodynamics of Fractals Revisited with Wavelets. Physica A, 213, 232–275.

    Article  Google Scholar 

  3. J.F. Muzy, E. Bacry and A. Arneodo (1994): The Multifractal Formalism Revisited with Wavelets. International Journal of Bifurcation and Chaos 4, No 2, 245–302.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Arneodo, A. Argoul, J.F. Muzy, M. Tabard and E. Bacry (1995): Beyond Classical Multifractal Analysis using Wavelets: Uncovering a Multiplicative Process Hidden in the Geometrical Complexity of Diffusion Limited Aggregates. Fractals 1, 629–646.

    Article  MathSciNet  Google Scholar 

  5. A. Arneodo, E. Bacry, RV. Graves and J.F. Muzy (1995): Characterizing Long-Range Correlations in DNA Sequences from Wavelet Analysis. PRL, 74, No 16, 3293–3296.

    Article  Google Scholar 

  6. P. Ch. Ivanov, M.G. Rosenblum, C.-K. Peng, J. Mietus, S. Havlin, H.E. Stanley and A.L. Goldberger (1996): Scaling Behaviour of Heartbeat Intervals Obtained by Wavelet-based Time-series Analysis. Nature, 383, 323–327.

    Article  Google Scholar 

  7. Z.R. Struzik (1995): The Wavelet Transform in the Solution to the Inverse Fractal Problem. Fractals 3 No.2, 329–350.

    Article  MATH  Google Scholar 

  8. Z.R. Struzik (1996): From Coastline Length to Inverse Fractal Problem: The Concept of Fractal Metrology. Thesis, University of Amsterdam.

    Google Scholar 

  9. Z.R. Struzik (1997): Fractals under the Microscope or Reaching Beyond the Dimensional Formalism of Fractals with the Wavelet Transform. CWI Quarterly, 10, No 2, 109–151.

    MathSciNet  MATH  Google Scholar 

  10. I. Daubechies (1992): Ten Lectures on Wavelets. S.I.A.M..

    MATH  Google Scholar 

  11. M. Holschneider (1995): Wavelets - An Analysis Tool. Oxford Science Publications.

    MATH  Google Scholar 

  12. S. Jaffard and Y. Meyer (1996): Wavelet methods for pointwise regularity and local oscillations of functions. Memoirs of AMS, 123(587).

    MathSciNet  Google Scholar 

  13. B. Guiheneuf and J. Lévy Véhel (1998): 2-Microlocal Analysis and Application in Signal Processing, In proceedings of International Wavelets Conference, Tangier.

    Google Scholar 

  14. S. Jaffard (1997): Multifractal Formalism for Functions: I. Results Valid for all Functions, II. Self-Similar Functions. SIAM J. Math. Anal., 28(4): 944–998.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Arneodo, E. Bacry and J.F. Muzy (1995): Oscillating Singularities in Locally Self-Similar Functions. PRL, 74, No 24, 4823–4826.

    Article  Google Scholar 

  16. S.G. Mallat and W.L. Hwang (1992): Singularity Detection and Processing with Wavelets. IEEE Trans. on Information Theory 38, 617–643.

    Article  MathSciNet  Google Scholar 

  17. S.G. Mallat and S. Zhong (1992): Complete Signal Representation with Multiscale Edges. IEEE Trans. PAMI 14, 710–732.

    Article  Google Scholar 

  18. A. Arneodo, E. Bacry and J.F. Muzy (1994): Solving the Inverse Fractal Problem from Wavelet Analysis. Europhysics Letters, 25, No 7, 479–484.

    Article  Google Scholar 

  19. Z.R. Struzik (1998): Removing Divergences in the Negative Moments of the Multi-Fractal Partition Function with the Wavelet Transformation. CWI Report, INS-R9803. Also in ‘Fractals and Beyond - Complexities in the Sciences’, M.M. Novak, Ed., World Scientific, 351–352.

    Google Scholar 

  20. K. Falconer (1990): Fractal Geometry - Mathematical Foundations and Applications, John Wiley.

    MATH  Google Scholar 

  21. Y. Liu, P. Cizeau, P. Gopikrishnan, M. Meyer, C.-K. Peng and H.E. Stanley (1998): Volatility Studies of the S&P 500 Index. Preprint.

    Google Scholar 

  22. P. Cizeau, Y. Liu, M. Meyer, C.-K. Peng and H.E. Stanley (1997): Volatility Distribution in the S&P 500 Stock Index. Physica A, 245, 441–445.

    Article  MathSciNet  Google Scholar 

  23. P. Ch. Ivanov, M.G. Rosenblum, L.A. Nunes Amaral, Z.R. Struzik, S. Havlin, A.L. Goldberger and H.E. Stanley (1998): Multifractality in Human Heartbeat Dynamics. Preprint.

    Google Scholar 

  24. Ch. Canus, J. Lévy Véhel and C. Tricot (1998): Continuous Large Deviation Multi-fractal Spectrum: Definitions and Estimation. ‘Fractals and Beyond - Complexities in the Sciences’, M.M. Novak, Ed., World Scientific, 117–128.

    Google Scholar 

  25. J. Lévy Véhel and R. Vojak (1998): Multifractal Analysis of Choquet Capacities: Preliminary Results In Advances in Applied Mathematics, Vol. 20, No. 1, pp. 1–43, January.

    Article  Google Scholar 

  26. J. Lévy Véhel (1996): Numerical Computation of the Large Deviation Multifractal Spectrum, In CFIC, Rome.

    Google Scholar 

  27. J. Lévy Véhel and R. H. Riedi (1997): Fractional Brownian Motion and Data Traffic Modeling: The Other End of the Spectrum. Fractals in Engineering, J. Levy Vehel, E. Lutton, C. Tricot, Eds., Springer Verlag.

    Chapter  Google Scholar 

  28. R. H. Riedi and J. Lévy Véhel (1997): TCP Traffic is Multifractal: a Numerical Study. INRIA Research Report, No. 3129.

    Google Scholar 

  29. Heart Failure Database (Beth Israel Deaconess Medical Center, Boston, MA).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Struzik, Z.R. (1999). Local Effective Hölder Exponent Estimation on the Wavelet Transform Maxima Tree. In: Dekking, M., Véhel, J.L., Lutton, E., Tricot, C. (eds) Fractals. Springer, London. https://doi.org/10.1007/978-1-4471-0873-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0873-3_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1225-9

  • Online ISBN: 978-1-4471-0873-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics