Skip to main content

Two Algorithms for Non-Separable Wavelet Transforms and Applications to Image Compression

  • Conference paper
Fractals

Abstract

Previously, the use of non-separable wavelets in image processing has been hindered by the lack of a fast algorithm to perform a non-separable wavelet transform. We present two such algorithms in this paper. The first algorithm implements a periodic wavelet transform for any valid wavelet filter sequence and dilation matrices satisfying a trace condition. We discuss some of the complicating issues unique to the non-separable case and how to overcome them. The second algorithm links Haar wavelets and complex bases and uses this link to drive the algorithm. For the complex bases case, the asymmetry of the wavelet trees produced leads to a discussion of the complexities in implementing zero-tree and other wavelet compression methods. We describe some preliminary attempts at using this algorithm, with non-separable Haar wavelets, for reducing the blocking artifacts in fractal image compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. F. Barnsley (1988): Fractals Everywhere. Academic Press, New York.

    MATH  Google Scholar 

  2. E. Belogay and Yang Wang. Arbitrarily smooth orthogonal nonseparable wavelets in R2. To appear in SIAM Math. Analysis.

    Google Scholar 

  3. J. J. Benedetto and M. W. Frazier, editors (1994): Wavelets: Mathematics and Applications. Studies in Advanced Mathematics, CRC Press.

    MATH  Google Scholar 

  4. W. C. Brown (1993): Matrices over Commutative Rings. Marcel Dekker, New York.

    MATH  Google Scholar 

  5. C. Cabrelli, C. Heil, and U. Molter. Accuracy of lattice translates of several multidimensional refinable functions. To appear in J. Approximation Theory.

    Google Scholar 

  6. I. Daubechies (1992): Ten Lectures on Wavelets. SIAM Press, Philadelphia, PA.

    MATH  Google Scholar 

  7. M. Davio, J. P. Deschamps and C. Gossart (May 1978): Complex Arithmetic. Philips MBLE Research Lab. Report R369.

    Google Scholar 

  8. Yuval Fisher (1995): Fractal Image Compression: Theory and Applications. Springer-Verlag, New York.

    Google Scholar 

  9. W. Gilbert (1981): Radix representations of quadratic fields. J. Math. Anal. Appl., 83, 264–274.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Gilbert (1982): Fractal geometry derived from complex bases. Math. Intelligencer, 4(2), 78–86.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Gilbert (1982): Geometry of radix representations. In C. Davis, B. Grünbaum and F. A. Sherk, editors, The Geometric Vein, The Coxeter Festschrift, Springer-Verlag, 129–139.

    Google Scholar 

  12. W. Gilbert (1984): Arithmetic in complex bases. Mathematics Magazine, 57(2), 77–81.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Gilbert (May 1994): Complex based number systems. Unpublished.

    Google Scholar 

  14. W. Gilbert (1996): The division algorithm in complex bases. Canadian Mathematical Bulletin, 39(1), 47–54.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Gröchenig and W. R. Madych (1992): Multiresolution analysis, haar bases, and self-similar tilings of R n. IEEE Trans. Inform. Theory, 39, 556–568.

    Article  Google Scholar 

  16. J. E. Hutchinson (1981): Fractals and Self-similarity. Indiana Univ. Math. J. 30, 713–747.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Kátai and B. Kovács (1981): Canonical number systems in imaginary quadratic fields. Acta Math. Acad. Sci. Hungaricae, 37, 159–164.

    Article  MATH  Google Scholar 

  18. I. Kátai and J. Szabó (1975): Canonical number systems for complex integers. Acta. Sci. Math. (Szeged), 37, 255–260.

    MathSciNet  MATH  Google Scholar 

  19. J. Kovacevic and M. Vetterli (1995): Nonseparable two- and three-dimensional wavelets. IEEE Trans. on Signal Processing 43, 1269–1273.

    Article  Google Scholar 

  20. J. C. Lagarias and Yang Wang (1995): Haar-type orthonormal wavelet basis in R2. J. Fourier Analysis and Appl., 2, 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  21. Kevin Leeds (1997): Dilation Equations with Matrix Dilations. PhD Thesis, Department of Math, Georgia Tech.

    Google Scholar 

  22. N. Lu (1997): Fractal Imaging. Academic Press.

    MATH  Google Scholar 

  23. S. Mallat (1989): Multiresolution approximation and wavelet orthonormal bases of L 2(R). Trans. AMS, 315, 69–88.

    MathSciNet  MATH  Google Scholar 

  24. F. Mendivil (1998): A discrete periodic wavelet transform for non-separable wavelets. Preprint.

    Google Scholar 

  25. F. Mendivil (1998): The application of a fast non-separable discrete periodic wavelet transform to fractal image compression. Preprint. Submitted to Fractals in Engineering 99.

    Google Scholar 

  26. F. Mendivil and E. R. Vrscay (1997): Correspondence between fractal-wavelet transforms and iterated function systems with grey level maps. In E. Lutton, C. Tricot and J. Lévy Véhel, editors, L’Ingénieur et les fractales, Springer Verlag, 54–64.

    Google Scholar 

  27. Y. Meyer (1987): Ondelettes, fonctions splines et analyses graduées. Rapport CEREMADE n. 8703.

    Google Scholar 

  28. C. A. Micchelli and H. Prautzsch (1989): Uniform refinement of curves. Linear Algebra Appl., 114/115, 841–870.

    Article  MathSciNet  Google Scholar 

  29. E. R. Vrscay (1998): A new class of fractal-wavelet transforms for image representation and compression. Can. J. Elect. Comp. Eng., 23, 69–83.

    Google Scholar 

  30. G. Strang and T. Nguyen (1996): Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley.

    Google Scholar 

  31. Yang Wang (1997): Self-Affine Tiles. Preprint, to appear in Proc. Chinese Univ. of Hong Kong Workshop on Wavelet.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Mendivil, F., Piché, D. (1999). Two Algorithms for Non-Separable Wavelet Transforms and Applications to Image Compression. In: Dekking, M., Véhel, J.L., Lutton, E., Tricot, C. (eds) Fractals. Springer, London. https://doi.org/10.1007/978-1-4471-0873-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0873-3_21

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1225-9

  • Online ISBN: 978-1-4471-0873-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics