Fractals pp 185-206 | Cite as

Conformal Multifractality of Random Walks, Polymers, and Percolation in Two Dimensions

  • Bertrand Duplantier
Conference paper


Our aim is to derive from conformal invariance the multifractal spectrum of the harmonic measure near a random fractal, such as the frontier of a random walk, i.e., a Brownian motion, a self-avoiding walk, or a percolation cluster. First we consider the related problem of L planar random walks (or Brownian motions) of large time t, starting at neighboring points, and the probability \(P_L (t) \approx t^{ - \zeta _L } \) that their paths do not intersect. By a 2D quantum gravity method, i.e., a non linear map onto a random Riemann surface, the former conjecture that \(\zeta _N = \frac{1}{{24}}(4L^2 - 1)\) is established. This also applies to the half-plane where \({\tilde\zeta} _{N} = \frac{L}{3}(1 + 2L)\). The non-intersection exponents of unions of independent paths are obtained from generalization of the above formulae to non integer or non rational values of L. In particular, Mandelbrot’s conjecture for the Hausdorff dimension D H = 4/3 of the frontier of a Brownian path follows from \(L = \frac{3}{2}\) as \(D_H = 2 - 2\zeta _{3/2} \). The same techniques apply to the harmonic measures (or electrostatic potential, or diffusion field) near a RW or a SAW, or near a critical percolation cluster, whose moments exhibit a multifractal spectrum. The generalized dimensions D (n) as well as the multifractal functions f (α) are derived, and are shown to be all identical for a Brownian motion, a polymer, or a percolation cluster. These are examples of exact conformal multifractality. They are generalized to Potts clusters.


Partition Function Brownian Motion Quantum Gravity Hausdorff Dimension Conformal Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Symanzyk (1972). In Local Quantum Theory, edited by R. Jost (Academic, London, New-York, 1969); RG. de Gennes, Phys. Lett. A38, 339.Google Scholar
  2. 2.
    M. Aizenman (198l). Phys. Rev. Lett. 47, 1.MathSciNetCrossRefGoogle Scholar
  3. M. Aizenman (1982). Commun. Math. Phys. 86, 1.MathSciNetMATHCrossRefGoogle Scholar
  4. D.C. Brydges, J. Fröhlich and T. Spencer (1982). Commun. Math. Phys. 83, 123.CrossRefGoogle Scholar
  5. 3.
    B. Mandelbrot (1982): The fractal geometry of nature. New-York, Freeman.MATHGoogle Scholar
  6. 4.
    G.F. Lawler (1982). Commun. Math. Phys. 86, 539.MathSciNetMATHCrossRefGoogle Scholar
  7. G.F. Lawler (1991): Intersection of Random Walks. Boston, Birkhäuser.Google Scholar
  8. 5.
    M. Aizenman (1985). Commun. Math. Phys. 97, 91.MathSciNetMATHCrossRefGoogle Scholar
  9. G. Felder and J. Fröhlich, ibid., 111; G.F. Lawler, ibid., 583.Google Scholar
  10. 6.
    B. Duplantier (1987). Commun. Math. Phys. 117, 279.MathSciNetCrossRefGoogle Scholar
  11. 7.
    B. Duplantier and K.-H. Kwon (1988). Phys. Rev. Lett. 61, 2514.CrossRefGoogle Scholar
  12. 8.
    B. Li and A. D. Sokal (1990). J. Stat. Phys. 61 723.MathSciNetCrossRefGoogle Scholar
  13. E.E. Puckette and W. Werner (1996). Elect. Comm. in Probab. 1, 5.MathSciNetGoogle Scholar
  14. 9.
    K. Burdzy and G.F. Lawler (1990). Probab. Th. Rel. Fields 84, 393.MathSciNetMATHCrossRefGoogle Scholar
  15. G.F. Lawler (1990). Ann. Probab. 18, 981.MathSciNetMATHCrossRefGoogle Scholar
  16. 10.
    B.B Mandelbrot (1974). J. Fluid. Mech. 62, 331.MATHCrossRefGoogle Scholar
  17. 11.
    H.G.E. Hentschel and I. Procaccia (1983). Physica (Amsterdam) 8D, 835.MathSciNetGoogle Scholar
  18. 12.
    U. Frisch and G. Parisi (1985). In Proceedings of the International School of Physics “Enrico Fermi”, course LXXXVIII, edited by M. Ghil (North-Holland, New York) p. 84.Google Scholar
  19. 13.
    T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B.I. Shraiman (1986). Phys. Rev. A33, 1141.MathSciNetMATHCrossRefGoogle Scholar
  20. 14.
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov (1984). Nucl. Phys. B241, 333.MathSciNetCrossRefGoogle Scholar
  21. 15.
    D. Friedan, J. Qiu, and S. Shenker (1984). Phys. Rev. Lett. 52, 1575.MathSciNetCrossRefGoogle Scholar
  22. 16.
    B. Nienhuis (1987). In Phase transition and critical phenomena, vol. 11, ed. C. Domb and J.L. Lebowitz (Academic, London).Google Scholar
  23. 17.
    B. Duplantier (1986). Phys. Rev. Lett. 57, 941.MathSciNetCrossRefGoogle Scholar
  24. B. Duplantier (1989). J. Stat. Phys. 54, 581.MathSciNetCrossRefGoogle Scholar
  25. 18.
    B. Duplantier and H. Saleur (1986). Phys. Rev. Lett. 57, 3179.MathSciNetCrossRefGoogle Scholar
  26. H. Saleur (1986). J. Phys. A19 L807.MathSciNetGoogle Scholar
  27. 19.
    M. Cates and J.M. Deutsch (1987). Phys. Rev. A35, 4907.MathSciNetGoogle Scholar
  28. B. Duplantier and A. Ludwig (1991). Phys. Rev. Lett. 66, 247.MathSciNetMATHCrossRefGoogle Scholar
  29. C. Von Ferber (1997). Nucl. Phys. B490, 511Google Scholar
  30. 20.
    M.E. Cates and T.A. Witten (1986). Phys. Rev. Lett. 56, 2497CrossRefGoogle Scholar
  31. . M.E. Cates and T.A. Witten (1987). Phys. Rev. A35, 1809.MathSciNetGoogle Scholar
  32. 21.
    N.G. Makarov (1985). Proc. London Math. Soc. 51, 369.MathSciNetMATHCrossRefGoogle Scholar
  33. 22.
    M. Aizenman and A. Burchard (to appear). math.FA/981027. In Duke Math. J.Google Scholar
  34. 23.
    R. Langlands, P. Pouliot and Y. Saint-Aubin (1994). Bull. AMS 30, 1MathSciNetMATHCrossRefGoogle Scholar
  35. J. L. Cardy (1992). J. Phys. A25, L201.MathSciNetGoogle Scholar
  36. 24.
    M. Aizenman (1998). In Mathematics of Multiscale Materials; the IMA Volumes in Mathematics and its Applications, K.M. Golden et al. eds, Springer-Verlag.Google Scholar
  37. 25.
    I. Benjamini and O. Schramm (1998). Commun. Math. Phys. 197, 75.MathSciNetMATHCrossRefGoogle Scholar
  38. 26.
    B. Duplantier (1998). Phys. Rev. Lett. 81, 5489.MathSciNetMATHCrossRefGoogle Scholar
  39. 27.
    B. Duplantier (1999). Phys. Rev. Lett. 82, 880.MathSciNetCrossRefGoogle Scholar
  40. 28.
    B. Duplantier (to be published), 9901008.
  41. 29.
    G.F. Lawler and W. Werner (to be published).Google Scholar
  42. 30.
    A.M. Polyakov (1987). Mod. Phys. Lett. A2, 893.MathSciNetGoogle Scholar
  43. Knizhnik, A.M. Polyakov and A.B. Zamolodchikov (1988). Mod. Phys. Lett. A3, 819.MathSciNetGoogle Scholar
  44. 31.
    A.M. Polyakov (1987): Gauge fields and Strings. Harwood-Academic, Chur.Google Scholar
  45. 32.
    D.V. Boulatov, et al. (1986). Nucl. Phys. B275, 641.MathSciNetCrossRefGoogle Scholar
  46. F. David (1985). Nucl. Phys. B257, 45, 543.CrossRefGoogle Scholar
  47. J. Ambjorn, B. Durhuus and J. Fröhlich, ibid., 433.Google Scholar
  48. 33.
    V.A. Kazakov (1986). Phys. Lett. A119, 140.MathSciNetGoogle Scholar
  49. 34.
    B. Duplantier and I.K. Rostov (1988). Phys. Rev. Lett. 61, 1436.MathSciNetGoogle Scholar
  50. B. Duplantier and I.K. Kostov (1990). Nucl. Phys. B 340, 491.MathSciNetCrossRefGoogle Scholar
  51. 35.
    F. David (1988). Mod. Phys. Lett. A 3, 1651.CrossRefGoogle Scholar
  52. J. Distler and H. Kawai (1988). Nucl. Phys. B321 509.MathSciNetGoogle Scholar
  53. 36.
    I.K. Kostov and M.L. Mehta (1987). Phys. Lett. B189, 118.MathSciNetGoogle Scholar
  54. 37.
    W. Werner (1997). Probab. Th. Rel. Fields 108, 131.MATHCrossRefGoogle Scholar
  55. 38.
    G.F. Lawler (1996). Elect. Comm. in Probab. 1 (29).MathSciNetMATHGoogle Scholar
  56. 39.
    J.F. Joanny, L. Leibler and R.C. Ball (1984). J. Chem. Phys. 81, 4640.CrossRefGoogle Scholar
  57. 40.
    C. von Ferber and Y. Holovatch (1997). Europhys. Lett. 39, 31.CrossRefGoogle Scholar
  58. C. von Ferber and Y. Holovatch (1997). Phys. Rev. E 56, 6370.CrossRefGoogle Scholar
  59. 41.
    J. Cardy (1984). Nucl. Phys. B240 [FS12], 514.CrossRefGoogle Scholar
  60. 42.
    B.B. Mandelbrot and C.J.G. Evertsz (1990). Nature 348, 143.CrossRefGoogle Scholar
  61. 43.
    G.F. Lawler (1998). To be published.Google Scholar
  62. 44.
    L. V. Ahlfors (1973): Conformal Invariants. Topics in Geometric Function Theory. McGraw-Hill, New York.MATHGoogle Scholar
  63. 45.
    R.C. Ball and R. Blumenfeld (1991). Phys. Rev. A 44, R828.CrossRefGoogle Scholar
  64. 46.
    R. C. Ball, B. Duplantier and T. C. Halsey (1999). Unpublished.Google Scholar
  65. 47.
    B. Duplantier (1999). To be published, Isaac Newton Institute preprint.Google Scholar
  66. M. Aizenman, B. Duplantier and A. Aharony (to be published), 9901018.
  67. 49.
    P. Meakin et al. (1986). Phys. Rev. A 34, 3325MathSciNetGoogle Scholar
  68. P. Meakin (1986). ibid. 33, 1365Google Scholar
  69. P. Meakin et al. (1988). In Phase Transitions and Critical Phenomena, vol. 12, edited by C. Domb and J.L. Lebowitz (Academic, London).Google Scholar
  70. 50.
    P. Meakin and B. Sapoval (1992). Phys. Rev. A 46, 1022.Google Scholar
  71. 51.
    H. Saleur and B. Duplantier (1987). Phys. Rev. Lett. 58, 2325.MathSciNetCrossRefGoogle Scholar
  72. 52.
    T. Grossman and A. Aharony (1987). J. Phys. A 20, L1193.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1999

Authors and Affiliations

  • Bertrand Duplantier
    • 1
    • 2
    • 3
  1. 1.Service de Physique Théorique de SaclayGif-sur-Yvette CedexFrance
  2. 2.Institut Henri PoincaréParis Cedex 05France
  3. 3.Isaac Newton Institute for Mathematical SciencesUK

Personalised recommendations