Skip to main content

Vector Analysis on Fractal Curves

  • Conference paper
Fractals
  • 363 Accesses

Abstract

This article introduces a constructive definition of contour integrals over fractal curves in the plane by making use the notion of oriented Iterated Function Systems and directional pseudo-measures. An expression for the contour integral of continuous functions over fractal interfaces is obtained through renormalization. As a result, a vector calculus on fractal interfaces which are boundaries of regular two-dimensional domains is developed by extending Green’s theorem in the plane also to fractal curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Tricot (1995): Curves and fractal dimensions. Springer Verlag, Berlin.

    Google Scholar 

  2. T. Pajkossy (1991). J. Electroanal. Chem. 300 1.

    Article  Google Scholar 

  3. S.H. Liu (1985). Phys. Rev. Lett. 55 529.

    Article  Google Scholar 

  4. A. Seri-Levy and A. Avnir (1993). J. Phys. Chem. 97 10380.

    Article  Google Scholar 

  5. M. Giona and M. Giustiniani (1996). J. Phys. Chem. 100 16690.

    Article  Google Scholar 

  6. M. V. Berry (1979). In Structural Stability in Physics. Guttinger W. and Elkeimer H. (Eds). Springer Verlag, Berlin.

    Google Scholar 

  7. J. Kigami and M. L. Lapidus (1993). Comm. Math. Phys. 158 93.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Russ, B. Sapoval and Haeberlé (1997). Phys. Rev. E 55 1413.

    Article  Google Scholar 

  9. H. Wallin (1991). Manuscripta Math. 73 117.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Jonsson and H. Wallin (1995). Studia Mathematica 112 285.

    MathSciNet  MATH  Google Scholar 

  11. A. Jonsson and H. Wallin (1997): Chaos Solitons & Fractals. 8 191.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. F. Barnsley (1988): Fractals Everywhere. Academic Press, Boston.

    MATH  Google Scholar 

  13. K. Falconer (1993): Fractal Geometry Mathematical Foundations and Applications. J. Wiley & Sons, New York.

    MATH  Google Scholar 

  14. P. R. Haimos (1950): Measure Theory. Van Nostrand, New York.

    Google Scholar 

  15. D. Bessis and S. Demko (1991). Physica D47 427.

    MathSciNet  MATH  Google Scholar 

  16. S. Abenda, S. Demko and G. Turchetti (1992): Inverse Problems. 8 737.

    Article  MathSciNet  Google Scholar 

  17. B. Forte and E. R. Vrscay (1994): Fractals. 2 325.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Courant and D. Hilbert (1962): Methods of Mathematical Physics. J. Wiley & Sons, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Giona, M. (1999). Vector Analysis on Fractal Curves. In: Dekking, M., Véhel, J.L., Lutton, E., Tricot, C. (eds) Fractals. Springer, London. https://doi.org/10.1007/978-1-4471-0873-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0873-3_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1225-9

  • Online ISBN: 978-1-4471-0873-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics