Advertisement

Progressive Content-based Retrieval of Image Databases through the Internet

  • Lawrence D. Bergman
  • Vittorio Castelli
  • Chung-Shang Li
  • John R. Smith
  • Alexander Thomasian

Abstract

Content-based search has attracted the interest of numerous researchers as a promising paradigm for retrieving information from digital libraries. The content of an image or video segment can be specified at least at three different levels of abstraction, namely, pixel level, feature level, and semantic level.

Keywords

Digital Library Simple Object Composite Object Video Indexing Progressive Classifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Arman, A. Hsu, and M.Y. Chiu. Image processing on compressed data for large video database. In Proc. ACM Multimedia 93, pages 267–272, 1993.CrossRefGoogle Scholar
  2. 2.
    J. R. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey, and R. Jain. The virage image search engine: An open framework for image image management. In Proc. SPIE - Int. Soc. Opt. Eng., volume 2670, Storage and Retrieval for Still Image and Video Databases, pages 76–87, 1996.Google Scholar
  3. 3.
    L. Bergman, J. Schoudt, V. Castelli, L. Knapp, and C.-S. Li. Asimm: A framework for automated synthesis of query interfaces for multimedia databases. In Proc. SPIE - Int. Soc. Opt Eng., volume 3229, pages 264–275, 1997.Google Scholar
  4. 4.
    Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification and Regression Trees. Wadsworth & Brooks/Cole, 1984.MATHGoogle Scholar
  5. 5.
    Vittorio Castelli, Chung-Sheng Li, John J. Turek, and Ioannis Kontoyiannis. Progressive classification in the compressed domain for large EOS satellite databases. In Proc. of 1996 IEEE Intern. Conf. Acoust. Speech Signal Proc., volume 4, pages 2201–2204, May 1996.Google Scholar
  6. 6.
    Vladimir S. Cherkassky, J. H. Friedman, and Harry Wechsler. From statistics to neural networks: theory and pattern recognition applications. Springer-Verlag, 1993.Google Scholar
  7. 7.
    V. Dasarathy, Belur, editor. Nearest Neighbor Pattern Classification Techniques. IEEE Computer Society, 1991.Google Scholar
  8. 8.
    T. Y. Hou, P. Liu, A. Hsu, and M. Y. Chiu. Medical image retrieval by spatial feature. In Proc. IEEE Intern. Conf. System, Man, and Cybernetics, pages 1364–1369, 1992.Google Scholar
  9. 9.
    C.-S. Li, J. J. Turek, and E. Feig. Progressive template matching for content-based retrieval in earch observing satellite image databases. In Proc. SPIE Photonic East - Int. Soc. Opt. Eng., volume 2606, pages 134–44, November 1995.Google Scholar
  10. 10.
    Chung-Sheng Li, Vittorio Castelli, Lawrence D. Bergman, and John R. Smith. Sproc: Fast algorithm for sequential processing of composite objects retrieval from large image/video archives. In Proc. SPIE Photonic West - Int. Soc. Opt. Eng., San Jose, CA, Jan 24–30 1998.Google Scholar
  11. 11.
    Stephane G. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans, Pattern Anal. Mach. Intell., 11(7):674–693, July 1989.MATHCrossRefGoogle Scholar
  12. 12.
    W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, C. Faloutsos, and G. Taubin. The QBIC project: Querying images by content using color texture, and shape. In Proc. SPIE - Int. Soc. Opt. Eng., volume 1908, Storage Retrieval for Image and Video Databases, pages 173–187, 1993.Google Scholar
  13. 13.
    A. Pentland, R.W. Picard, and S. Sclaroff. Photobook: Tools for content-based manipulation of image databases. In Proc. SPIE - Int. Soc. Opt. Eng., volume 2185, Storage and Retrieval for Image and Video Databases, pages 34–47, February 1994.Google Scholar
  14. 14.
    J.R. Smith and S.-F. Chang. Frequency and spatially adaptive wavelet packets. In Proc. of 1995 IEEE Intern. Conf. Acoust. Speech Signal Proc., pages 2233–2236, Detroit, MI, May 1995.Google Scholar
  15. 15.
    J.R. Smith and S.-F. Chang. Visualseek: A fully automated content-based image query system. In Proc. 4th ACM Multimedia Conf., pages 87–98, Boston, MA, USA, 18–22 Nov 1996.Google Scholar
  16. 16.
    J.R. Smith and S.-F. Chang. Joint adaptive space and frequency basis selection. In Proc. IEEE Int. Conf. Image Processing, Santa Barbara, CA, October 1997.Google Scholar
  17. 17.
    S. W. Smoliar and H. Zhang. Content based video indexing and retrieval. IEEE Multimedia, l(2):62–72, Summer 1994.CrossRefGoogle Scholar
  18. 18.
    A. Thomasian, V. Castelli, and C.-S. Li. Clustering and singular value decomposition for approximate indexing in high dimensional spaces. In Proc. of Seventh International Conference on Information and Knowledge Management (CIKm’98), to appear, 1998.Google Scholar
  19. 19.
    H. Zhang and S. W. Smoliar. Developing power tools for video indexing and retrieval. In Proc. SPIE - Int. Soc. Opt. Eng., volume 2185, Storage and Retrieval for Image and Video Databases, pages 140–149, Feb 1994.Google Scholar

Copyright information

© Springer-Verlag London Limited 1999

Authors and Affiliations

  • Lawrence D. Bergman
    • 1
  • Vittorio Castelli
    • 1
  • Chung-Shang Li
    • 1
  • John R. Smith
    • 1
  • Alexander Thomasian
    • 1
  1. 1.IBM T.J. Watson Research CenterHawthorneUSA

Personalised recommendations