Skip to main content

The role of feedback connections in task-driven visual search

  • Conference paper
Book cover Connectionist Models in Cognitive Neuroscience

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

Abstract

Studies of attention suggest a model in which attention emerges from a parallel, distributed competition. Within that framework, this contribution tries to explain the findings of the experiment by CHELAZZI ET AL. [1] by taking into account feedback from successive stages. It is shown that the developed model can qualitatively obtain the same results as measured in the experiment. Furthermore, the model shows promising similarities to human reaction times in visual search tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chelazzi L, Miller EK, Duncan J, Desimone, R. A neural basis for visual search in inferior temporal cortex. Nature 1993; 363: 345–347.

    Article  Google Scholar 

  2. Motter BC. Focal attention produces spatially selective processing in visual cortical areas VI, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology 1993; 70:909–919.

    Google Scholar 

  3. Luck SJ, Chelazzi L, Hillyard SA. Desimone, R.: Mechanisms of spatial selective attention in areas VI, V2 and V4 of macaque visual cortex. Journal of Neurophysiology 1997; 77:24–42.

    Google Scholar 

  4. Maunsell JHR. The brains’s visual world: Representation of visual targets in cerebral cortex. Science 1995; 270:764–769.

    Article  Google Scholar 

  5. Motter BC. Neural correlates of attentive selection for color or luminance in extrastriate area V4. Journal of Neuroscience 1994; 14:2178–2189.

    Google Scholar 

  6. Egeth HE, Virzi RA, Garbart H. Searching for conjunctively defined targets. Journal of Experimental Psychology: Human Perception and Performance 1984; 10:32–39.

    Article  Google Scholar 

  7. Desimone R, Duncan J. Neural mechanisms of selective attention. Anu. Rev. of Neurose. 1995; 18:193–222.

    Article  Google Scholar 

  8. Duncan J, Humphreys GW, Ward R. Competitive brain activity in visual attention. Current Opinion in Neurobiology 1997; 7:255–261.

    Article  Google Scholar 

  9. Usher M, Niebur E. Modeling the temporal dynamics of IT neurons in visual search: A mechanism for top-down selective attention. Journal of Cognitive Neuroschience 1996; 8(4):311–327.

    Article  Google Scholar 

  10. Schneider WX. VAM: A neuro-cognitive model for visual attention, control of segmentation, object recognition and space-based motor action. Visual Cognition 1995; 2:331–375.

    Article  Google Scholar 

  11. Somers DC, Nelson SB, Sur M. An emergent model of orientation selectivity in cat visual cortical simple cells. The Journal of Neurocience 1995; 15:5448–5465.

    Google Scholar 

  12. Amari S, Arbib MA. Competition and cooperation in neural nets. In: Systems Neuroscience. Metzler J (ed). Academic Press, San Diego, 1977, pp. 119–165.

    Google Scholar 

  13. Duncan J, Humphreys GW. Beyond the search surface: Visual search and attentional engagement. Journal of Experimental Psychology: Human Perception and Performance 1992; 18:578–588.

    Article  Google Scholar 

  14. Luck SJ, Girelli M, McDermott MT, Ford MA. Bridging the gap between monkey neuro-physiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology 1997; 33:64–87.

    Article  Google Scholar 

  15. Moran J, Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science 1985;229:782–784.

    Article  Google Scholar 

  16. Wolfe J, Cave K, Franzel S. Guided Search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology 1989; 15:419–433.

    Google Scholar 

  17. Mozer MC, Sitton M. Computational modeling of spatial attention. In: Pashler H (ed) Attention. Psychology Press, East Sussex, UK, 1998, pp. 341–393.

    Google Scholar 

  18. Phaf RH; van der Heijden AHC, Hudson PTW. SLAM: A connectionist model for attention in visual selection tasks. Cognitive Psychology 1990; 22:273–341.

    Article  Google Scholar 

  19. Wolfe J. Guided search 2.0 A revised model of visual search. Psy. Bulletin & Review 1994; 1:202–238.

    Article  Google Scholar 

  20. van der Heijden AHC. Selective attention in vision. Routledge, London, New York, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Hamker, F.H. (1999). The role of feedback connections in task-driven visual search. In: Heinke, D., Humphreys, G.W., Olson, A. (eds) Connectionist Models in Cognitive Neuroscience. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0813-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0813-9_22

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-052-1

  • Online ISBN: 978-1-4471-0813-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics