Skip to main content

A Connectionist Model for Frequency Effects in Recall and Recognition

  • Conference paper
Connectionist Models in Cognitive Neuroscience

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

Abstract

The standard finding of frequency effect is a high frequency advantage in recall and low frequency advantage in recognition. However, there are exception from these findings in from of a high frequency advantage of cues in recognition, an advantage for recognition of words over non-words, and a lack of frequency effects in mixed list of recall. A distributed connectionist memory model consisting of two mechanism sensitive to frequency is suggested. The error correcting learning rule controls encoding of items keeping the system from catastrophic interference with correlated patterns. This mechanism is found essential to simulate low frequency advantage in recognition. The familiarity is measured as the absolute net input. This mechanism accounts for the advantage of high frequency in recall, words over non-words in recognition, and high frequency cues. The model is implemented in a modified Hopfield network and analyzed analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, L. R., & Garton, R. F. (1968). The influence of word-knowledge on the word-frequency effect in recognition memory. Psychonomie Science, 10, 401–402.

    Google Scholar 

  • Balota, D. A., & Neely, J. H. (1980). Test-expectancy and word-frequency effects in recall and recognition. Journal of experimental psychology: Human learning and memory, 6(5), 576–587.

    Article  Google Scholar 

  • Buhmann, D., & Schulten, K. (1989). Hebbian synapses: Biophysical mechanisms and algorithms.Annual Review of Neuroscience, 13, 475–511.

    Google Scholar 

  • Chappell, ML, & Humphreys, M. S. (1994). An auto-associative neural network for sparse representations: Analysis and application to models of recognition and cued recall. Psychological Review, 101(1). 103–128.

    Article  Google Scholar 

  • Clark, S. E. (1992). Word frequency effects in associative and item recognition. Memory & Cognition, 20, 231–243.

    Article  Google Scholar 

  • Clark, S. E., & Shiffrin, R. M. (1992). Cueing effects and associative information in recognition memory. Memory & Cognition(23). 580–598.

    Article  Google Scholar 

  • Deese, J. (1960). Frequency of usage and the number of words in free recall: The role of association. Psychological Reports, 7, 96–102.

    Google Scholar 

  • Duncan, C. P. (1974). Retrieval of low-frequency words from mixed lists. Bulletin of the Psychonomie Society, 4, 137–138.

    Google Scholar 

  • Fahy, F. L., Riches, I. P., & Brown, M. W. (1993). Neuronal activity related to visual recognition memory: Long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex. Experimental Brain Research, 96, 457–472.

    Article  Google Scholar 

  • Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition and recall. Psychological Review, 91, 1–67.

    Article  Google Scholar 

  • Glanzer, M., & Adams, J. K. (1985). The mirror effect in recognition memory. Memory & Cognition, 13, 8–20.

    Article  Google Scholar 

  • Glanzer, M., & Adams, J. K. (1990). The mirror effect in recognition memory: Data and theory. Journal of Experimental Psychology: Learning. Memory, and Cognition, 16(1), 5–16

    Article  Google Scholar 

  • Gorman, A. M. (1961). Recognition memory for nouns as a function of abstractness and frequency. Journal of Experimental Psychology, 61, 23–29.

    Article  Google Scholar 

  • Gregg, V. H. (1976). Word frequency, recognition, and recall. In J. Brown (Ed.), Recall and recognition (pp. 183–216). London: Wiley.

    Google Scholar 

  • Hall, J. (1954). Learning as a function of word frequency. American Journal of Psychology, 67, 138–140.

    Article  Google Scholar 

  • Hebb, D. O.1949. The Organisation of Behavior. New York: Wiley. Partially reprinted in Anderson and Rosenberg (1988).

    Google Scholar 

  • Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural computation. Addison-Wesley Publishing Company.

    Google Scholar 

  • Hintzman, D. L. (1987). Recognition and recall in MINERVA 2: Analysis of the “recognition failure” paradigm. In P. Morris (Ed.), Modeling cognition (pp. 215–229). London: Wiley.

    Google Scholar 

  • Hopfield, J. J. (1982). Neural Networks and Physical Systems with Emergent Computational Abilities. Proceeding of the National Academy of Sciences. USA, 81, 3088–3092.

    Article  Google Scholar 

  • Hopfield, J. J. (1984). Neurons with graded responses have collective computational abilities. Proceedings of the National Academy of Science USA, 81, 3008–3092.

    Article  Google Scholar 

  • Humphreys, M. S., Bain, J. D., & Pike, R. (1989). Different way to cue a coherent memory system: A theory for episodic, semantic and procedural tasks. Psychological Review, 96, 208–233.

    Article  Google Scholar 

  • Li, L., Miller, E. K., & Desimone, R. (1993). The representation of stimulus familiarity in anterior inferior temporal cortex. Journal of Neurophysiology, 69, 1918–1929.

    Google Scholar 

  • McCormack, P. D., & Swenson, A. L. (1972). Recognition memory for common and rare words. Journal of Experimental Psychology, 95, 72–77.

    Article  Google Scholar 

  • Metcalfe, J. (1982). A composite holographic associative recall model. Psychological Review, 89, 627–658.

    Article  Google Scholar 

  • Metcalfe, J. (1993). Monitoring and gain control in an episodic memory model: Relation to the P300 event-related potential. In S. E. G. Alan F. Collins, Martin A. Conway, Peter E. Morris (Ed.), Theories of memory (pp. 327–353). Hove, England: Lawrence Erlbaum Associates.

    Google Scholar 

  • Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian Conditioning: The effectiveness of Reinforcement and Nonreinforcement. In. Classical Condition II: Current Research and Theory, eds. A. H. Black and W, F. Prokasy. 64–69. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Rumelhart, D. E., & McClelland, J. L. (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 2 vols. Cambridge: MIT Press.

    Google Scholar 

  • Schulman, A. I., & Lovelace, E. A. (1970). Recognition memory for words presented at a slow or rapid rate. Psychonomie Sciences, 21, 99–100.

    Google Scholar 

  • Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM — retrieving effectively from memory. Psychonomic bulletin & review, 4(2), 145–166.

    Article  Google Scholar 

  • Sikström, P. S. (1996). The TECO connectionist theory of recognition failure. European Journal of Cognitive Psychology, 341–380.

    Google Scholar 

  • Sikström, P. S. (1997). A connectionist model for novelty and familiarity in episodic memory, submitted.

    Google Scholar 

  • Sikström, P. S. (1998). Forgetting curves and transient global amnesia: implications on connectionist models, submitted.

    Google Scholar 

  • Sikström, P. S., & Lansner, A. (1995). The TECO Theory — Simulations of Recognition Failure. In L. F. Niklasson & M. B. BodĂ©n (Eds.), Current Trends in Connectionism (pp. 87–102). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Sumby, W. M. (1963). Word frequency and serial position effect. Journal of Verbal Learning and Verval Behavior, 1,443–450.

    Article  Google Scholar 

  • Tsodyks, M. V., & Feigel’man, M. V. (1988). The Enhanced Storage Capacity in Neural Networks with Low Activity Level. Europhysics Letters, 6, 101–105°

    Article  Google Scholar 

  • Tulving, E., & Kroll, N. (1995). Novelty assessment in the brain and long-term memory encoding. Psychonomic Bulletin & Review, 2(3), 387–390.

    Article  Google Scholar 

  • Tulving, E., Markowitsch, H. J., Kapur, S., Habib, R., & Houles, S. (1994). Novelty encoding networks in the human brain: Positron emission tomography data. NeuroReport, 5, 2525–2528.

    Article  Google Scholar 

  • Widrow, B., & Hoff, M. E. (1960). Adaptive Switching Circuits. In 1960 IRE WESCON Convention Record, part 4. New York: IRE. Reprinted in Anderson and Rosenberg (1988), 96–104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Sikström, S. (1999). A Connectionist Model for Frequency Effects in Recall and Recognition. In: Heinke, D., Humphreys, G.W., Olson, A. (eds) Connectionist Models in Cognitive Neuroscience. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0813-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0813-9_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-052-1

  • Online ISBN: 978-1-4471-0813-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics