Performance Evaluation of Resource Management Schemes for Non-GSO Satellite Communications

  • Axel Jahn
Conference paper


Efficient resource management is mandatory to achieve maximum system capacity for next generation communications systems. Resource management deals with the available spectral band, time, power, and space for a transmission signal. It includes (i) the frequency planning, (ii) the selection of transmit power, and (iii) the assignment of the channels and access nodes to the users. The paper presents a generalized notation as well as graph algorithms for resource management problems. Impairment graphs can be used for frequency planning, whereas flow graphs are suitable for channel access problems. To evaluate the performance of the resource management, service criteria (such as blocking or the carrier to interference ratio C/I) or efficiency criteria (bandwidth requirements) can be derived from the graphs. The resource management techniques are applied to satellite networks with non-geostationary orbits yielding time-variant network topologies. As a simple example, the channel assignment and capacity optimization of the EuroSkyWay system are shown. Furthermore, a comparison of fixed, dynamic and hybrid channel allocation schemes (FCA, DCA, HCA) for a typical MEO satellite scenario is given. Satellite diversity and its impact on bandwidth requirement and transmission quality is also examined.


Satellite System Channel Assignment Spot Beam Channel Allocation Flow Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Blondeau, G. Maral, and J. P. Taisant. Region oriented resource allocation methodology for non-geostationary mobile communications satellite systems. IOS Press Space Communications, 13:171–191, 1995.Google Scholar
  2. 2.
    P. Poskett. Satellite systems architectures. In Mobile and Personal Satellite Communications 2 - Proceedings 2nd European Workshop on Mobile/Personal S at corns (EMPS’96), pages 485–500. Springer-Verlag, London, 1996.Google Scholar
  3. 3.
    J. Schindall. Concept and implementation of the Globalstar mobile satellite system. In Proceedings Fourth International Mobile Satellite Conference IMSC’95, pages A11–A16, 1995.Google Scholar
  4. 4.
    A. Jahn. On resource management in LMS systems. In Proceedings 5th International Mobile Satellite Conference (IMSC’97), pages 269–276, 1997.Google Scholar
  5. 5.
    A. Jahn. Resource management techniques applied to satellite communications networks. In Proceedings of the International Zurich Seminar, pages 1–8, 1998.Google Scholar
  6. 6.
    J. G. Proakis. Digital Communications. McGraw-Hill, New York, 1989.Google Scholar
  7. 7.
    J. Zander. Radio resource management. In IEEE VTS 46th Vehicular Technology Conference (VTC’96), pages 16–20, 1996.Google Scholar
  8. 8.
    J. Zander. Radio resource management in future wireless networks: Requirements and limitations. IEEE Communications Magazine, 35(August):30–36, 1997.CrossRefGoogle Scholar
  9. 9.
    L. Kleinrock. Queueing Systems, Vol. 1 Theory. John Wiley, New York, 1976.MATHGoogle Scholar
  10. 10.
    W. C. Y. Lee. Mobile Communications Design Fundamentals. John Wiley & Sons, New York, 1993.CrossRefGoogle Scholar
  11. 11.
    F. Vatalaro, G. E. Corazza, C. Caini, and C. Ferrareli. Analysis of LEO, MEO, and GEO global mobile satellite systems in the presence of interference and fading. IEEE J. Selected Areas in Communications, 13:291–300, 1995.CrossRefGoogle Scholar
  12. 12.
    R. E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley, Reading, 1983.MATHGoogle Scholar
  13. 13.
    M. Bossert. Kanalcodierung. B. G. Teubner, Stuttgart, 1992.Google Scholar
  14. 14.
    J. Restrepo and G. Maral. Providing appropriate service quality to fixed and mobile users in a non-GEO satellite-fixed cell system. In Mobile and Personal Satellite Communications 2 - Proceedings 2nd European Workshop on Mobile/Personal Satcoms (EMPS’96), pages 80–96. Springer-Verlag, London, 1996.Google Scholar
  15. 15.
    I. Katzela and M. Naghshineh. Channel assignment schemes for cellular mobile telecommunications systems: A comprehensive survey. IEEE Personal Communications, June: 10–31, 1996.Google Scholar
  16. 16.
    E. Del Re, R. Fantacci, and G. Giambene. Efficient dynamic channel allocation techniques with handover queueing for mobile satellite networks. IEEE J. Selected Areas in Communications, 13:397–405, 1995.CrossRefGoogle Scholar
  17. 17.
    E. Del Re, R. Fantacci, and G. Giambene. An efficient technique for dynamically allocating channels in satellite cellular networks. In Proceedings IEEE Globecom, pages 1624–1628, 1995.Google Scholar
  18. B. Bjelajac. Performance analysis of mobile satellite systems with dynamic channel assignment and handover resource reservation. In Proc. Second European Personal Mobile Communications Conference (EPMCC’97), pages 601–606, 1997.Google Scholar
  19. 19.
    S. Konishi, T. Mizuike, Y. Kishi, and Y. Watanabe. Flexible transmission bandwidth management with effective channel reservation techniques for NGSO MSS networks. IEEE J. Selected Areas in Communications, 15:1197–1207, 1997.CrossRefGoogle Scholar
  20. 20.
    V. O. K. Li and X. Qiu. Personal communication systems (PCS). Proceedings of the IEEE, 83:1210–1243, 1995.CrossRefGoogle Scholar
  21. 21.
    T. Goerke, N. Hart, and A. Jahn. A discussion on mobile satellite systems and the myths of CDMA and diversity revealed. In Proceedings Fourth International Mobile Satellite Conference IMSC’95, pages 469–475, 1995.Google Scholar
  22. 22.
    A. Jahn, H. Bischl, and G. Heiß. Channel characterisation for spread spectrum satellite communications. In Proceedings IEEE Fourth International Symposium on Spread Spectrum Techniques and Applications (ISSSTA’96), pages 1221–1226, 1996.Google Scholar
  23. 23.
    M. C. Golurnbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.Google Scholar
  24. 24.
    C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.MATHGoogle Scholar
  25. 25.
    D. E. Knuth. The Stanford GraphBase. Addison-Wesley, Reading, 1993.Google Scholar
  26. 26.
    F. S. Roberts. On the mobile radio frequency assignment problem and the traffic light. Annals of the New York Academy of Sciences, 319:466–483, 1979.CrossRefGoogle Scholar
  27. 27.
    W. K. Hale. Frequency assignment: Theory and applications. Proceedings of the IEEE, 68:1497–1514, 1980.CrossRefGoogle Scholar
  28. 28.
    R. J. Opsut and F. S. Roberts. On fleet maintenance, mobile radio frequency, task assignment, and traffic phasing problems. In Proceedings 4th International Graph Theory. Conference, pages 479–492, 1980.Google Scholar
  29. 29.
    A. Gamst and W. Rave. On frequency assignment in mobile automatic telephone systems. In Proceedings IEEE Gobecom, pages 309–315, 1982.Google Scholar
  30. 30.
    R. Künzel. Channel assignment scheme for cellular radio networks. Siemens Forschungs- u. Entwickl. Berichte, 11:139–142, 1982.Google Scholar
  31. 31.
    M. Grevel and A. Sachs. A graph theoretical analysis of dynamic channel assignment algorithms for mobile radiocommunication systems. Siemens Forsch.- u. Entwickl.-Ber., 12:298–305, 1983.Google Scholar
  32. 32.
    A. Quellmalz. Graphenorientierte Planung von Sendernetzen. PhD thesis, Universität Karlsruhe, Nomos-Verlagsgesellschaft, Baden-Baden, 1993.Google Scholar
  33. 33.
    T. Niessen. Optimal channel assignment in cellular radio networks with linear structure. In ITG-Fachbericht 135: Mobile Kommunikation, pages 181–187, 1995.Google Scholar
  34. 34.
    F. L. Hitchcock. The distribution of several sources to numerous localities. J. Math. Physics, 20:224–230, 1941.MathSciNetMATHGoogle Scholar
  35. 35.
    T. L. Magnanti and R. T. Wong. Network design and transportation planning: Models and algorithms. Transportation Science, 18:1–55, 1984.CrossRefGoogle Scholar
  36. 36.
    F. Kaderali and W. Poguntke. Graphen, Algorithmen, Netze: Grundlagen und Anwendungen in der Nachrichtentechnik. Vieweg, Braunschweig, 1995.Google Scholar
  37. 37.
    D. Jungnickel. Graphen, Netzwerke und Algorithmen. BI-Wissenschaftsverlag, Mannheim, 1994.Google Scholar
  38. 38.
    M. Werner, A. Jahn, E. Lutz, and A. Böttcher. Analysis of system parameters for LEO/ICO-satellite communications networks. IEEE J. Selected Areas in Communications, 13:371–381, 1995.CrossRefGoogle Scholar
  39. 39.
    E. Lutz. Satellite systems for mobile communications. In Tutorial at GlobeCom. IEEE Press, Piscataway, New Jersey, USA, 1997.Google Scholar
  40. 40.
    G. Losquadro, M. Luglio, and F. Vatalaro. A geostationary satellite system for mobile multimedia applications using portable, aeronautical and mobile terminals. In Proceedings 5th International Mobile Satellite Conference (IMSC’97), pages 427–432, 1997.Google Scholar
  41. 41.
    A. Jahn. Interference measurement programme. Final Report: Inmarsat Purchase Order P002672, DLR, Institut für Nachrichentechnik, 1994.Google Scholar
  42. 42.
    W. J. Vogel, H. Ling, and G. W. Torrence. Fluorescent light interaction with personal communication signals. IEEE Trans. Communications, 43:194–197, 1995.CrossRefGoogle Scholar
  43. 43.
    A. Jahn. Measurement programme for generic satellite channels. Final Report, Inmarsat Purchase Order P004001, DLR, Institut für Nachrichtentechnik, 1994.Google Scholar
  44. 44.
    E. Lutz, D. Cygan, M. Dippold, F. Dolainsky, and W. Papke. The land mobile satellite communication channel-recording, statistics and channel model. IEEE Trans. Vehicular Technology, 40:375–386, 1991.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Berlin Limited 1999

Authors and Affiliations

  • Axel Jahn
    • 1
  1. 1.Institute for Communications TechnologyGerman Aerospace Center (DLR)WesslingGermany

Personalised recommendations