Skip to main content

Conservatism of the standard upper bound test: Is sup(\({{\bar \mu } \mathord{\left/ {\vphantom {{\bar \mu } \mu }} \right. \kern-\nulldelimiterspace} \mu }\)) finite? Is it bounded by 2?

  • Chapter

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

This short note is about the conservatism of the standard upper bound, \(\bar \mu \)relative to the complex structured singular value, μ.This problem is first formulated by John Doyle. To follow the present note, only mathematical definitions of μ, and \(\bar \mu \) are necessary. For a tutorial introduction about complex μ and its importance in system analysis and design, see [10]. If M∈ ℂn ×n, then

$$\mu \left( M \right): = \sup \left\{ {p\left( {M\Delta } \right):\,\Delta = diag\left( {{\delta _1}, \ldots ,{\delta _n}} \right),\,{\delta _1}, \ldots ,{\delta _n} \in D} \right\}\,,$$
$$\bar \mu \left( M \right): = \inf \left\{ {\bar \sigma \left( {{D^{ - 1}}MD} \right):D = diag\left( {{d_1}, \ldots ,{d_n}} \right),{d_1}, \ldots ,{d_n} > 0} \right\}.$$

.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd, S., L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia: Society for Industrial and Applied Mathematics, 1994.

    Google Scholar 

  2. Braatz, R. D., P. M. Young, J. C. Doyle, and M. Morari, “Computational Complexity of μ Calculation,” IEEE Transactions on Automatic Control, 39 (1994) pp. 1000–1002.

    Article  MathSciNet  MATH  Google Scholar 

  3. Coxson, G. E., and C. L. DeMarco, “The computational complexity of approximating the minimal perturbation scaling to achieve instability in an interval matrix,” Math, of Control, Signals, and Systems, 7 (1994) pp. 279–292.

    Article  MathSciNet  MATH  Google Scholar 

  4. Fu, M., “The real structured singular value is hard to approximate,” to appear in IEEE Transactions on Automatic Control

    Google Scholar 

  5. Garey, M., and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, San Francisco: W. H. Freeman, 1979.

    MATH  Google Scholar 

  6. Megretski, A., “On the gap between structured singular values and their upper bounds,” Proc. 32nd Conference on Decision and Control, San Antonio, TX, Dec. 1993, pp. 3461–3462.

    Google Scholar 

  7. Megretski, A., “Necessary and sufficient conditions of stability: a multiloop generalization of the circle criterion,” IEEE Transactions on Automatic Control, 38 (1993) pp. 753–756.

    Article  MathSciNet  MATH  Google Scholar 

  8. Megretski, A., and S. Treil, “Power distribution inequalities in optimization and robustness of uncertain systems,” Journal of Math. Systems, Estimation, Control, 3 (1993) pp. 301–319.

    Google Scholar 

  9. Nemirovskii, A., “Several NV-hard problems arising in robust stability analysis,” Math, of Control, Signals, and Systems, 6 (1993) pp. 99–105.

    Article  MathSciNet  MATH  Google Scholar 

  10. Packard, A., and J. C. Doyle, “The Complex Structured Singular Value,” Automatica, 29 (1993) pp. 71–109.

    Article  MathSciNet  MATH  Google Scholar 

  11. Poolla, K., and A. Tikku, “Robust Performance Against Time-Varying Structured Perturbations,” IEEE Transactions on Automatic Control, 40 (1995) pp. 1589–1602.

    Article  MathSciNet  MATH  Google Scholar 

  12. Poljak, S., and J. Rolin, “Checking robust nonsingularity is NP-hard,” Math, of Control, Signals, and Systems, 6 (1993) pp. 1–9.

    Article  MATH  Google Scholar 

  13. Shamma, J., “Robust Stability with Time Varying Structured Uncertainly,” IEEE Transactions on Automatic Control, 39 (1994) pp. 714–724.

    Article  MathSciNet  MATH  Google Scholar 

  14. Toker, O., and H. Ozbay, “On the Complexity of Purely Complex fi Computation and Related Problems in Multidimensional Systems,” IEEE Transactions on Automatic Control, 43 (1998) pp. 409–414.

    Article  MathSciNet  MATH  Google Scholar 

  15. Toker, O., “On the conservatism of the upper bound tests for structured singular value analysis,” Proc. 35th Conference on Decision and Control, Kobe, Japan, Dec. 1996, pp. 1295–1300.

    Google Scholar 

  16. Toker, O., and H. Ozbay, “Complexity issues in robust stability of linear delay-differential systems,” Math. of Control, Signals, and Systems, 9 (1996) pp. 386–400.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this chapter

Cite this chapter

Toker, O., de Jager, B. (1999). Conservatism of the standard upper bound test: Is sup(\({{\bar \mu } \mathord{\left/ {\vphantom {{\bar \mu } \mu }} \right. \kern-\nulldelimiterspace} \mu }\)) finite? Is it bounded by 2?. In: Blondel, V., Sontag, E.D., Vidyasagar, M., Willems, J.C. (eds) Open Problems in Mathematical Systems and Control Theory. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-0807-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0807-8_43

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1207-5

  • Online ISBN: 978-1-4471-0807-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics