Spectral Nevanlinna-Pick Interpolation

  • Allen R. Tannenbaum
Part of the Communications and Control Engineering book series (CCE)


Let ε be a finite dimensional vector space, let D denote the unit disc, let z 1,…, z n D be mutually distinct, and let F 1,…,F n B(ε), where B(ε), denotes the space of bounded linear operators on ε. For a bounded analytic function F: DB(ε), let ∥Fsp be the spectral radius defined by
$${\left\| F \right\|_{sp}}: = \sup \left\{ {{{\left\| {F\left( z \right)} \right\|}_{sp}}:\,z \in D} \right\},$$
where ∥F(z)∥sp is the spectral radius of the operator F(z) (= the absolute value of the eigenvalue of largest magnitude of F(z)).


Spectral Radius Interpolation Problem Hankel Operator Gain Margin Finite Dimensional Vector Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Bercovici, C. Foias, and A. Tannenbaum, “On the optimal solutions in spectral commutant lifting theory,” Journal of Functional Analysis 101 (1991), pp. 38–49.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    H. Bercovici, C. Foias, and A. Tannenbaum, “A spectral commutant lifting theorem,” Trans. AMS 325 (1991), pp. 741–763MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    H. Bercovici, C. Foias, and A. Tannenbaum, “The structured singular value for linear input/output operators,” SIAM J. Control and Optimization 34 (1996), pp. 1392–1404.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    J. C. Doyle, B. Francis, and A. Tannenbaum, Feedback Control Theory, McMillan, New York, 1991.Google Scholar
  5. [5]
    B. Francis, A Course in H Control Theory, Lecture Notes in Control and Information Sciences 88, Springer Verlag, 1987.Google Scholar
  6. [6]
    B. Francis and A. Tannenbaum, “Generalized interpolation theory in control,” Mathematical Intelligencer 10 (1988), pp. 48–53.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.MATHGoogle Scholar
  8. [8]
    D. Sarason, “Generalized interpolation in H∞,” Transactions of the AMS 127 (1967), pp. 179–203.MathSciNetMATHGoogle Scholar
  9. [9]
    B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North Holland, Amsterdam, 1970.Google Scholar
  10. [10]
    A. Tannenbaum, Invariance and System Theory: Algebraic and Geo-metric Aspects, Lecture Notes in Mathematics 845, Springer-Verlag, 1981.Google Scholar
  11. [11]
    A. Tannenbaum, “Spectral Nevanlinna-Pick interpolation theory,” Proc. of 26th IEEE Conference on Decision and Control, Los Angeles, California, December 1987, pp. 1635–1638.Google Scholar
  12. [12]
    A. Tannenbaum, “On the multivariable gain margin problem,” Automatica 22 (1986), pp. 381–384.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    G. Zames, “Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses,” IEEE Trans. Auto. Control AC-26 (1981), pp. 301–320.Google Scholar

Copyright information

© Springer-Verlag London Limited 1999

Authors and Affiliations

  • Allen R. Tannenbaum
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations