Skip to main content

Growth Factors and Cytokines in Chronic Pancreatitis

  • Chapter
Book cover Pancreatic Disease

Abstract

The pathological appearances of chronic pancreatitis are characterised by parenchymal fibrosis, ductal stones and strictures, acinar cell atrophy and inflammatory infiltration by macrophages, neutrophils and lymphocytes. One of the key features of pancreatic fibrosis is an abundant presence of fibroblasts and an accumulation of a dense extracellular matrix which is rich in fibril-forming collagens type I and III. Deposition of extracellular matrix in a diseased pancreas must therefore be regarded as a wound-healing response, much as in fibrosis due to chronic injury in the lung, liver, kidney or joints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedossa P, Bacci J, Lemaigre G, Martin E (1990) Lymphocyte subsets and HLA-DR expression in normal and chronic pancreatitis. Pancreas 5:415–420.

    Article  PubMed  CAS  Google Scholar 

  2. Sporn MB, Roberts AB, Wakefield LM, de Crombrugghe B (1987) Some recent advances in the chemistry and biology of transforming growth factor-beta. J Cell Biol 105:1039–1045.

    Article  PubMed  CAS  Google Scholar 

  3. Brunner AM et al. (1989) Site-directed mutagenesis of cysteine residues in the pro-region of the transforming growth factor beta-1 precursor. J Biol Chem 264:13660–13664.

    PubMed  CAS  Google Scholar 

  4. Matrisian LM, Leroy P, Ruhlman C, Gesnel M-C, Breathnach R (1986) Isolation of the oncogene and epidermal growth factor-induced transin gene: complex control in rat fibroblasts. Mol Cell Biol 6:1679–1686.

    PubMed  CAS  Google Scholar 

  5. Keski-Oja J, Raghow R, Sandey M (1988) Regulation of mRNAs for type I plasminogen activator inhibitor, fibronectin and type I procollagen by transforming growth factor-/?. J Biol Chem 263:3111–3115.

    PubMed  CAS  Google Scholar 

  6. Gress T, Miiller-Pillasch F, Elsasser HP et al. (1994) Enhancement of transforming growth factor-j81 expression in the rat pancreas during regeneration from caerulin-induced pancreatitis. Eur J Clin Invest 24:679–685.

    Article  PubMed  CAS  Google Scholar 

  7. Slater SD, Williamson RC, Foster CS (1995) Expression of transforming growth factor-beta 1 in chronic pancreatitis. Digestion 56:237–241.

    Article  PubMed  CAS  Google Scholar 

  8. Sanvito F, Nichols A, Herrera PL et al. (1995) TGF-/31 overexpression in murine pancreas induces chronic pancreatitis and, together with TNF-alpha, triggers insulin-dependent diabetes. Biochem Biophys Res Comm 217:1279–1286.

    Article  PubMed  CAS  Google Scholar 

  9. Van Laethaem JL, Robberecht P, Resibois A, Deviere J (1996) Transforming growth factor-beta promotes development of fibrosis after repeated courses of acute pancreatitis in mice. Gastroenterology 110:576–582.

    Article  Google Scholar 

  10. Lee MS, Gu D, Feng L et al. (1995) Accumulation of extracellular matrix and developmental dysregulation in the pancreas by transgenic production of transforming growth factor-beta 1. Am J Pathol 147:42–52.

    PubMed  CAS  Google Scholar 

  11. Smith FE, Reitz P, Schuppin GT, Bonner-Weir S (1993) Transforming growth factor-/? is involved in regulation of rat pancreatic regeneration following 90% pancreatectomy. Pancreas 8:773 (abstract).

    Google Scholar 

  12. Bisgaard HC, Thorgeirsson SS (1991) Evidence for a common cell of origin for primitive epithelial cells isolated from rat liver and pancreas. J Cell Physiol 147:333–343.

    Article  PubMed  CAS  Google Scholar 

  13. Van Laethem JL, Deviere J, Resibois A et al. (1995) Localization of transforming growth factor-beta 1 and its latent binding protein in human chronic pancreatitis. Gastroenterology 108:1873–1881.

    Article  PubMed  Google Scholar 

  14. Bockman DE, Merlino G (1992) Cytological changes in the pancreas of transgenic mice over-expressing transforming growth factor-a. Gastroenterology 103:1883–1892.

    PubMed  CAS  Google Scholar 

  15. Lucas PA, Caplan Al (1988) Chemotactic response of embryonic limb bud mesenchymal cells and muscle derived fibroblasts to transforming growth factor-beta. Connect Tissue Res 18:1–7.

    Article  PubMed  CAS  Google Scholar 

  16. Makela TP et al. (1987) Regulation of platelet-derived growth factor gene expression by transforming growth factor-beta and phorbol ester in human leukaemia cell lines. Mol Cell Biol 7:3656–3662.

    PubMed  CAS  Google Scholar 

  17. Battegay EJ et al. (1990) TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63:515–524.

    Article  PubMed  CAS  Google Scholar 

  18. Carpenter G, Cohen S (1979) Epidermal growth factor. Annu Rev Biochem 48:193.

    Article  PubMed  CAS  Google Scholar 

  19. Todaro G, Fryling C, De Larco JE (1980) Transforming growth factors produced by certain human tumour cells: polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci USA 77:5258–5262.

    Article  PubMed  CAS  Google Scholar 

  20. Friess H, Yamanaka Y, Buchler M, Kobrin MS, Tahara E, Korc M (1994) Cripto, a member of the epidermal growth factor family is over-expressed in human pancreatic cancer and chronic pancreatitis. Int J Cancer 56:668–674.

    Article  PubMed  CAS  Google Scholar 

  21. Korc M, Friess H, Yamanaka Y, Kobrin MS, Buchler M, Beger HG (1994) Chronic pancreatitis is associated with increased concentrations of epidermal growth factor receptor, transforming growth factor-alpha and phospholipase C gamma. Gut 35:1468–1473.

    Article  PubMed  CAS  Google Scholar 

  22. Barton CM, Hall PA, Hughes CM, Gulli WJ, Lemoine NR (1991) Transforming growth factor-alpha and epidermal growth factor in human pancreatic cancer. J Pathol 163:111–116.

    Article  PubMed  CAS  Google Scholar 

  23. Tomioka T, Toshkov I, Kazakoff K et al. (1995) Cellular and subcellular localisation of transforming growth factor alpha and epidermal growth factor-receptor in normal and diseased human and hamster pancreas. Terat Carcinog Mutagen 15:231–250.

    Article  CAS  Google Scholar 

  24. Arnush M, Gu D, Baugh C et al. (1996) Growth factors in the regenerating pancreas of c-interferon transgenic mice. Lab Invest 74:985–990.

    PubMed  CAS  Google Scholar 

  25. Dinarello CA (1988) Interleukin-1. Dig Dis Sci 33:25S-35S.

    Article  Google Scholar 

  26. Oppenheim JJ, Kovacs EJ, Matsushima K, Durum SK (1986) There is more than one interleukin-1. Immunol Today 7:45–56.

    Article  CAS  Google Scholar 

  27. Gery I, Gershon RK, Waksman BH (1972) Potentiation of the T lymphocyte reponse to mitogens I. The responding cell. J Exp Med 136:128–142.

    Article  PubMed  CAS  Google Scholar 

  28. Durum SK, Schimdt JA, Oppenheim JJ (1985) Interluekin-1: an immunological perspective. Annu Rev Immunol 3:263–287.

    Article  PubMed  CAS  Google Scholar 

  29. Basso D, Plebeni M, Fogar P et al. (1995) Insulin-like growth factor, interleukin-1 alpha and beta in pancreatic cancer: role in tumour invasiveness and associated diabetes. Int J Clin Lab Res 25:40–43.

    Article  PubMed  CAS  Google Scholar 

  30. Bamba T, Yoshioka U, Inoue H, Iwasaki Y, Hosoda S (1994) Serum levels of interleukin-1 beta and interleukin-6 in patients with chronic pancreatitis. J Gastroenterol 29:314–319.

    Article  PubMed  CAS  Google Scholar 

  31. Cavalis E (1986) Interleukin-1 has independent effects on DNA and collagen synthesis in cultures of rat calvariae. Endocrinology 118:74–81.

    Article  Google Scholar 

  32. Smith KA (1988) Interleukin-2: inception, impact and implications. Science 240:1169.

    Article  PubMed  CAS  Google Scholar 

  33. Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193:1007–1008.

    Article  PubMed  CAS  Google Scholar 

  34. Ortaldo JR, Mason A, Gerard JP et al. (1984) Effects of natural and recombinant interleukin-2 on regulation of interferon-c production and natural killer cell activity: lack of involvement of the Tac antigen from these immunoregulatory effects. J Immunol 133:779–783.

    PubMed  CAS  Google Scholar 

  35. Farrar JJ, Benjamin WR, Hifiker ML, Howard M, Farrar WL, Fuller-Farrar J (1982) The biochemistry, biology and role of IL-2 in the induction of cytotoxic T cell and antigen-forming B cell responses. Immunol Rev 63:129–166.

    Article  PubMed  CAS  Google Scholar 

  36. Inaba Kl, Grannelli-Piperno A, Steinman RM (1983) Dendritic cells induce T lymphocytes to release B cell stimulating factors by an IL-2 dependent mechanism. J Exp Med 158:2040–2057.

    Article  PubMed  CAS  Google Scholar 

  37. Pezzilli R, Billi P, Beltrandi E et al. (1994) Serum soluble interleukin-2 receptor in pancreatic cancer and chronic pancreatitis. Ital J Gastroenterol 26:137–140.

    PubMed  CAS  Google Scholar 

  38. Rabbitti PG, Pacelli L, Uomo G et al. (1994) Soluble interleukin-2 receptor; a new marker in pancreatic adenocarcinoma? Minerva Gastroenterol Dietol 40:101–103.

    Google Scholar 

  39. Billau A (1987) Interferon /32 as a promoter of growth and differentiation of B cells. Immunol Today 8:84–87.

    Article  Google Scholar 

  40. Gauldie J, Richards C, Harnish D, Lansdrop P, Baumann H (1987) Interferon beta-2/B cell stimulating factor type 2 shares identity with monocyte derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci USA 84:7521–7525.

    Article  Google Scholar 

  41. Van Snick J (1990) IL-6: an overview. Annu Rev Immunol 8:253–278.

    Article  PubMed  Google Scholar 

  42. Campbell IL, Hobbs MV, Dockter J, Oldstone MB, Allison J (1994) Islet inflammation and hyperplasia induced by the pancreatic islet-specific overexpression of interleukin-6 in transgenic mice. Am J Pathol 145:157–166.

    PubMed  CAS  Google Scholar 

  43. Sandor S, Zsuzsa S (1996) Basic fibroblast growth factor and PDGF in GI diseases. In: Goodland RA, Wright NA (eds) Bailliere’s clinical gastroenterology, 10:7. Saunders, London, pp 97–112.

    Google Scholar 

  44. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G (1987) Structural characterisation and biological functions of fibroblast growth factor. Endocrine Rev 8:95–114.

    Article  CAS  Google Scholar 

  45. Neufeld G, Gospodarowicz D (1986) Basic and acidic fibroblast growth factors interact with the same cell surface receptors. J Biol Chem 261:5631–5637.

    PubMed  CAS  Google Scholar 

  46. Folkmann I, Klagsbrunn M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic protein - fibroblast growth factor - is stored within basement membrane. Am J Pathol 130:393–400.

    Google Scholar 

  47. Friess H, Yamanaka Y, Buchler M, Beger HG, Do DA, Kobrin MS, Korc M (1994) Increased expression of acidic and basic fibroblast growth factors in chronic pancreatitis. Am Pathol 144:117–128.

    CAS  Google Scholar 

  48. Izumi T, Shimizu T (1995) Platelet-activating factor receptor: gene expression and signal transduction. Biochim Biophys Acta 1259:317–333.

    PubMed  Google Scholar 

  49. Zhou W, Levine BA, Olson MS (1994) Lipid mediator production in acute and chronic pancreatitis in the rat. J Surg Res 56:37–44.

    Article  PubMed  CAS  Google Scholar 

  50. Zhou WG, Chao W, Levine BA, Olson MS (1990) Evidence for platelet activating factor as a late-phase mediator of chronic pancreatitis in the rat. Am J Pathol 137:1501–1508.

    PubMed  CAS  Google Scholar 

  51. Van Deijnen JHM, Van Suylichem PTR, Wolters GHJ, Van Schilfgaarde R (1994) Distribution of collagens type I, type II and type V in the pancreas of rat, dog, pig and man. Cell Tissue Res 277:115–121.

    Article  PubMed  Google Scholar 

  52. Uscanga L, Kennedy RH, Choux R, Deuget M, Grimaud J-A, Sarles H (1984) Immunolocalization of collagen types, laminin and fibronectin in normal human pancreas. Digestion 30:158–164.

    Article  PubMed  CAS  Google Scholar 

  53. Kennedy RH, Bockman DE, Uscanga L, Grimaud J-A, Sarles H (1987) Pancreatic extracellular matrix alterations in chronic pancreatitis. Pancreas 2:61–17.

    Article  PubMed  CAS  Google Scholar 

  54. Panayotou G, End P, Aumailley M et al. (1989) Domains of laminin with growth factor activity. Cell 48:989–996.

    Google Scholar 

  55. Schuppan D, Somasundaram R, Just M (1992) The extracellular matrix: a major signal transduction network. In: Clement B Guillouzo A (eds) Cellular and molecular aspects of cirrhosis. Colloque INSERM/John Libbey Eurotext, London, pp 115–134.

    Google Scholar 

  56. Bissell DM (1992) Effects of extracellular matrix on hepatocyte behaviour. In: Clement B Guillouzo A (eds) Cellular and molecular aspects of cirrhosis. Colloque INSERM/John Libbey Eurotext, London, pp 187–197.

    Google Scholar 

  57. Border WA, Noble NA, Yamamoto T et al. (1992) Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 360:361–364.

    Article  PubMed  CAS  Google Scholar 

  58. Fowlkes JL, Suzuki K, Nagase H, Thrailkill KM (1994) Proteolysis of insulin-like growth factor binding protein-3 during rat pregnancy: a role for matrix metalloproteinases. Endocrinology 135:2810–2813.

    Article  PubMed  CAS  Google Scholar 

  59. Arthur MJP, Iredale JP (1994) Hepatic lipocytes, TIMP-1 and liver fibrosis. J R Coll Phys Lond 28:200–208.

    CAS  Google Scholar 

  60. Nagase H, Barrett AJ, Woessner JF Jr (1992) Nomenclature and glossary of the matrix metallo-proteinases. Matrix (Suppl 1):421–424.

    Google Scholar 

  61. Matrisian LM (1990) Metalloproteinases and their inhibitors in matrix remodelling. Trends Genet 6:121–125.

    Article  PubMed  CAS  Google Scholar 

  62. Murphy G, Hembry RM, Hughes CE, Fosang AJ, Hardingham TE (1990) Role and regulation of metalloproteinases in connective tissue turnover. Biochem Soc Trans 18:812–815.

    PubMed  CAS  Google Scholar 

  63. Sato H, Takino T, Okada Y et al. (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370:61–65.

    Article  PubMed  CAS  Google Scholar 

  64. Cao J, Sato H, Takino T, Seiki M (1995) The C-terminal region of membrane type matrix metalloproteinase is a functional transmembrane domain required for pro-gelatinase C activation. J Biol Chem 270:801–805.

    Article  PubMed  CAS  Google Scholar 

  65. Murphy G, Hembry RM (1992) Proteinases in rheumatoid arthritis. J Rheumatol 19:61–64.

    Google Scholar 

  66. Murphy G, Docherty AJP, Hembry RM, Reynolds JJ (1991) Metalloproteinases and tissue damage. Br J Rheumatol 30(Suppl 1):25–31.

    PubMed  Google Scholar 

  67. Marbaix E, Donnez J, Courtoy PJ, Eeckhout Y (1992) Progesterone regulates the activity of collagenase and related gelatinase-A and gelatinase-B in human endometrial explants. Proc Natl Acad Sci USA 89:11789–11793.

    Article  PubMed  CAS  Google Scholar 

  68. Overall CM, Wrana JL, Sudek J (1989) Independent regulation of collagenase, 72kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J Biol Chem 264:1860–1869.

    PubMed  CAS  Google Scholar 

  69. Edwards DR, Murphy G, Reynolds JJ et al. (1987) Transforming growth factor-beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J 6:1899–1904.

    PubMed  CAS  Google Scholar 

  70. Lafyatis R, Kim S-J, Angel P et al. (1990) Interleukin-1 stimulates and all-trans-retinoic acid inhibits collagenase gene expression through its 5’ activator protein-1-binding site. Mol Endocrinol 4:973–980.

    Article  PubMed  CAS  Google Scholar 

  71. Wahl LM, Wahl SM, Mergenhagen SE, Martin GR (1974) Collagenase production by endotoxin - activated macrophages. Proc Natl Acad Sci USA 71:3598–3601.

    Article  PubMed  CAS  Google Scholar 

  72. Cury JD, Campbell EJ, Lazarus CJ, Albin RJ, Welgus HG (1988) Selective up-regulation of human alveolar macrophage collagenase production by lipopolysaccharide and comparison to collagenase production by fibroblasts. J Immunol 141:4306–4312.

    PubMed  CAS  Google Scholar 

  73. Wahl LM, Wahl SM, Mergenhagen SE, Martin GR (1975) Collagenase production by lymphokine-activated macrophages. Science 187:261–263.

    Article  PubMed  CAS  Google Scholar 

  74. Shapiro SD, Campbell EJ, Kobayashi DK (1990) Immune modulation of metalloproteinase production in human macrophages. J Clin Invest 86:1204–1210.

    Article  PubMed  CAS  Google Scholar 

  75. Bhatnagar R, Schade U, Rietschel ET, Decker K (1982) Involvement of prostaglandin E and adenosine 3 ’5’-monophosphate in lipopolysaccharide-stimulated collagenase release by rat Kupffer cells. Eur J Biochem 124:125–130.

    Article  Google Scholar 

  76. McCarthy JB, Wahl SM, Rees JC, Olsen CE, Sandberg AL, Wahl LM (1980) Mediation of macrophage collagenase production by 3’-5’cyclic adenosine monophosphate. J Immunol 124:2405.

    PubMed  CAS  Google Scholar 

  77. Wahl LM, Olsen CE, Sandberg AL, Mergenhagen SE (1977) Prostaglandin regulation of macrophage collagenase production. Proc Natl Acad Sci USA 74:4955–4958.

    Article  PubMed  CAS  Google Scholar 

  78. Wahl LM, Winter CC (1984) Regulation of guinea pig macrophage collagenase production by dexamethasone and colchicine. Arch Biochem Biophys 230:661–667.

    Article  PubMed  CAS  Google Scholar 

  79. Werb Z, Foley R, Munck A (1978) Glucocorticoid receptors and glucocorticoid-sensitive secretion of neutral proteinases in a macrophage line. J Immunol 121:115–121.

    PubMed  CAS  Google Scholar 

  80. Murphy G, Docherty AJP (1992) The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol 7:120–125.

    PubMed  CAS  Google Scholar 

  81. Murphy G, Atkinson S, Ward R, Gavrilovic JJ, Reynolds JJ (1992) The role of plasminogen activators in the regulation of connective tissue metalloproteinases. Ann NY Acad Sci 667:1–12.

    Article  PubMed  CAS  Google Scholar 

  82. Edwards DR, Murphy G Reynolds JJ et al. (1987) Transforming growth factor-beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J 6:1899–1904.

    PubMed  CAS  Google Scholar 

  83. Stetler-Stevenson WG, Brown PD, Onisto M et al. (1990) Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumour cells and human tumour tissues. J Biol Chem 265:13933–13938.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this chapter

Cite this chapter

Vyas, S.K. (1999). Growth Factors and Cytokines in Chronic Pancreatitis. In: Johnson, C.D., Imrie, C.W. (eds) Pancreatic Disease. Springer, London. https://doi.org/10.1007/978-1-4471-0801-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0801-6_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1205-1

  • Online ISBN: 978-1-4471-0801-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics