BIS 2000 pp 197-207 | Cite as

Intelligent Information Extraction

  • Jakub Piskorski
  • Wojciech Skut
Conference paper


New developments in Information Technology and an ever-growing amount of unstructured business text documents in digital form require intelligent tools for precisely determining their content and relevance. In this paper we give an overview of the natural language processing approach to information extraction and information retrieval. Our article contains a brief description of efficient linguistic core components.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abney S. Partial parsing via finite-state cascades, In: Proceedings of the ESSLLI 96 Robust Parsing Workshop, 1996Google Scholar
  2. 2.
    Abramowicz W., Piskorski J., Gewinnen von Informationen aus aktiven und passiven Informationsquellen im Internet. International Conference on Business Information Systems, Poznan 1997Google Scholar
  3. 3.
    Bikel D., Miller S., Schwartz R., Weischedel R. Nymble: a High-Performance Learning name-finderGoogle Scholar
  4. 4.
    Brants T. Tagging and parsing with cascaded Markov models — Automation of corpus annotation. Doctoral dissertation, University of Saarland, Saarbrucken, 1999, Scholar
  5. 5.
    Charniak E. Statistical Language Learning. MIT — Press, 1993Google Scholar
  6. 6.
    Cole R.A., Mariani J., Uszkoreit H., Zaenen A., Zue V. Survey of the State of the Art in Human Language Technology, Cambridge University Press ISBN 0-521-59277-1Google Scholar
  7. 7.
    Grishman R. Information Extraction Techniques and Challenges, Lecture Notes in Artificial Intelligence 1299, Pazienza M.T. (ed) — Information Exrtraction, 1997Google Scholar
  8. 8.
    Grishman R., Sundheim B. Message Understanding Conference — 6: A Brief History. In: Proceedings of the 16th International Conference on Computational Linguistics (COLING), Kopenhagen, Denmark, 1996, pp 466 – 471Google Scholar
  9. 9.
    Mohri M . Finite-state transducers in language and speech processing. Computational Linguistics 23, 1997Google Scholar
  10. 10.
    L. Shiuan Peh, Christopher Hian Ann Ting. A divide-and-conquer strategy for parsing. In: Proceedings of the ACL/SIGPARSE 5th International Workshop on Parsing Technologies, 1996, pp 57–66Google Scholar
  11. 11.
    Piskorski J., Neumann G. An Intelligent Text Extraction and Navigation System. To appear in the Proceedings of RIAO 2000 — Content-Based multimedia Information Access, Paris, France, 2000Google Scholar
  12. 12.
    Pollard C., Sag I.A. Information-Based Syntax and Semantics, vol 1, Fundamentals. No. 13 in CSLI Lecture Notes, Stanford CSLI PublicationsGoogle Scholar
  13. 13.
    Roche E., Schabes Y. Deterministic part-of-speech tagging with finite state transducers. Comnputational Linguistics, 21 (2): 227 – 253, 1995Google Scholar
  14. 14.
    Roche E., Schabes Y. Introduction to finite-state devices in natural language processing. Technical report, Mitsubishi Electric Research Laboratories, TR-96-13, 1996Google Scholar
  15. 15.
    SAIC, editor, Seventh Message Understanding Conference (MUC-7),, 1998Google Scholar
  16. 16.
    Skut W., Krenn B., Brants T., Uszkoreit H. An Annotation Scheme for Free Word Order Languages. In: Proceedings of ANLP 1997, Washington D.C., 1997Google Scholar
  17. 17.
    Wauschkuhn O., Ein werkzeug zur partiellen syntaktischen analyse deutscher textkor- pora, In: Gibbon D. (ed) Natural Language Processing and Speech Technology. Results of the Third KONVENS Conference, Mouton de Gruyter, Berlin, 1996, pp 356 – 368Google Scholar

Copyright information

© Springer Verlag London Limited 2000

Authors and Affiliations

  • Jakub Piskorski
    • 1
    • 3
  • Wojciech Skut
    • 2
  1. 1.German Research Center for Artificial IntelligenceSaarbrückenGermany
  2. 2.German Research Center for Artificial IntelligenceSaarbrückenGermany
  3. 3.German Research Center for Artificial IntelligenceThe Poznań University of EconomicsPoznanPoland

Personalised recommendations