On the Power of Reading the Whole Infinite Input Tape

  • Ludwig Staiger
Part of the Discrete Mathematics and Theoretical Computer Science book series (DISCMATH)


Finite devices accepting infinite strings are the topic of several papers (see the recent surveys [4], [8] or [10], [11]). Most of these papers deal with finite automata. Thus finite automata as devices accepting infinite strings are wellunderstood. The situation is a little bit more involved if one considers more complicated accepting devices like, e.g., pushdown automata or Turing machines.


Turing Machine Finite Automaton Input Word Input Tape Infinite Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. S. Cohen, A. Y. Gold, Theory of ω-languages I: Characterizations of ω-context-free languages, and II: A study of various models of ω-type generation and recognition, J. Comput. System sci., 15, 2 (1977), 169–184 and 185–208.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    R. S. Cohen, A. Y. Gold, ω-computations on Turing machines, Theoret. Comput. sci., 6 (1978), 1–23.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    R. S. Cohen, A. Y. Gold, On the complexity of ω-type Turing acceptors, Theoret. Comput. sci., 10 (1980), 249–272.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    J. Engelfriet, H. J. Hoogeboom, X-automata on ω-words, Theoret. Comput. Sci, 110 (1993) 1, 1–51.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    L. H. Landweber, Decision problems for ω-automata, Math. Syst. Theory, 3, 4 (1969), 376–384.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw Hill, New York 1967.MATHGoogle Scholar
  7. [7]
    L. Staiger, Hierarchies of recursive ω-languages, J. Inform. Process. Cybernetics, EIK, 22, 5/6 (1986), 219–241.MathSciNetMATHGoogle Scholar
  8. [8]
    L. Staiger, ω-languages, in vol. 3 of Handbook of Formal Languages, (G. Rozenberg, A. Salomaa, eds.), Springer-Verlag, Berlin, 1997, 339–387.CrossRefGoogle Scholar
  9. [9]
    L. Staiger, K. Wagner, Rekursive Folgenmengen I, Zeitschr. Math. Logik u. Grundl. Mathematik, 24, 6 (1978), 523–538.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    W. Thomas, Automata on infinite objects, in vol. B of Handbook of Theoretical Computer Science (J. Van Leeuwen, ed.), Elsevier, Amsterdam, 1990, 133–191.Google Scholar
  11. [11]
    W. Thomas, Languages, automata, and logic, in vol. 3 of Handbook of Formal Languages (G. Rozenberg, A. Salomaa, eds.), Springer-Verlag, Berlin, 1997, 389–455.CrossRefGoogle Scholar
  12. [12]
    K. Wagner, L. Staiger, Recursive ω-languages, in Fundamentals of Computation Theory, (M. Karpiński, ed.), Lecture Notes in Computer Science, 56, Springer-Verlag, Berlin 1977, 532–537.Google Scholar

Copyright information

© Springer-Verlag London Limited 2000

Authors and Affiliations

  • Ludwig Staiger
    • 1
  1. 1.Institut für InformatikMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany

Personalised recommendations