Splicing Normalization and Regularity

  • Vincenzo Manca
Part of the Discrete Mathematics and Theoretical Computer Science book series (DISCMATH)


Some canonic forms of splicing derivations are introduced and the notion of ω-splicing is used for proving that H systems with a finite number of splicing rules and a regular set of axioms generate regular languages.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Adleman, Molecular computation of solutions to combinatorial problems, Science, 266 (Nov. 1994), 1021–1024.CrossRefGoogle Scholar
  2. [2]
    K. Culik II, T. Harju, The regularity of splicing systems and DNA, in Proc. ICALP 1989, Lecture Notes in Computer Science, 372, Springer- Verlag, 1989, 222–233.MathSciNetCrossRefGoogle Scholar
  3. [3]
    K. Culik II, T. Harju, Splicing semigroups of dominoes and DNA, Discrete Applied Mathematics, 31 (1991), 261–277.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    A. De Luca, A. Restivo, A characterization of strictly locally testable languages and its application to subsemigroups of a free semigroup, Information and Control, 44 (1980), 300–319.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    T. Head, Formal language theory and DNA: an analysis of the generative capacity of recombinant behaviors, Bulletin of Mathematical Biology 49 (1987), 737–759.MathSciNetMATHGoogle Scholar
  6. [6]
    T. Head, Splicing schemes and DNA, in: Lindenmayer Systems: Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology, (G. Rozenberg, A. Salomaa, eds.), Springer- Verlag, Berlin, Heidelberg, 1992, 371–383.Google Scholar
  7. [7]
    T. Head, Gh. Păun, D. Pixton, Language theory and molecular genetics, Chapter 7 in Handbook of Language Theory (G. Rozenberg, A. Salomaa, eds.), vol 2, Springer-Verlag, Berlin, Heidelberg, 1997, 295–360.Google Scholar
  8. [8]
    T. Head, Splicing representations of strictly locally testable languages, Discrete Applied Mathematics, 87, 1–3 (1998), 139–147.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    S. C. Kleene, Representation of events in nerve nets and finite automata, in Automata Studies, Princeton Univ. Press, Princeton, NJ, 1956.Google Scholar
  10. [10]
    A. Lindenmayer, Mathematical models for cellular interaction in development, I and II, J. Theoret. Biol., 18 (1968), 280–315.CrossRefGoogle Scholar
  11. [11]
    R. Lipton, DNA solution of hard computational problems, Science, 268 (April 1995), 542–545.CrossRefGoogle Scholar
  12. [12]
    V. Manca, Gh. Păun, Arithmetically controlled H systems, Computer Science Journal of Moldova, 6, 2(17) (1998), 103–118.MATHGoogle Scholar
  13. [13]
    V. Manca, Logical string rewriting, Theoretical Computer Science, to appear.Google Scholar
  14. [14]
    R. McNaughton, S. Papert, Counter-Free Automata, MIT Press, Cambridge, MA, 1971.MATHGoogle Scholar
  15. [15]
    Gh. Păun, On the splicing operation, Discrete Applied Mathematics, 70, 1 (1996), 57–79.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing Paradigms, Springer-Verlag, Berlin, 1998.MATHGoogle Scholar
  17. [17]
    D. Pixton, Regularity of splicing languages, Discrete Applied Mathematics, 69, 1–2 (1996), 101–124.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    D. Pixton, Splicing in abstract families of languages, Technical Report 26/97 of SUNY, Univ. of Binghamton, New York, 1997.Google Scholar
  19. [19]
    G. Rozenberg, A. Salomaa, eds., Handbook of Language Theory, 3 Volumes., Springer-Verlag, Berlin, Heidelberg, 1997.Google Scholar
  20. [20]
    M. P. Schützenberger, Sur certaines operations de fermeture dans les languages rationels, Sympos. Math., 15 (1975), 245–253.Google Scholar

Copyright information

© Springer-Verlag London Limited 2000

Authors and Affiliations

  • Vincenzo Manca
    • 1
  1. 1.Dipartimento di Informatica Corso ItaliaUniversità di PisaPisaItaly

Personalised recommendations