Skip to main content

Extending Hypertextures to Non-Geometrically Definable Volume Data

  • Chapter
Volume Graphics

Abstract

The increasing use of computer-generated graphical representations of everyday objects, in both entertainment and industry (including such areas as medical imaging), has led to the development of powerful rendering tools such as ray tracing, radiosity and volume rendering (see [1, 2] for a description). However, the images produced by such applications are somewhat bland when compared to their real-life counterparts. The surfaces of the objects appear smooth and plastic (Figure 13.1), not textured and natural. Therefore, increased realism in computer imagery is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foley JD, van Dam A, Feiner SK, Hughes JF. Computer Graphics Principles and Practice. Addison-Wesley, Second Edition, 1990.

    Google Scholar 

  2. Watt A, Watt M. Advanced Animation and Rendering Techniques Theory and Practice. Addison-Wesley, 1992.

    Google Scholar 

  3. Blinn JF. Simulation of wrinkled surfaces. ACM/SIGGRAPH Computer Graphics, 1978; 12 (3): 286–292.

    Article  Google Scholar 

  4. Blinn JF, Newell ME. Texture and reflection in computer generated images. Communication of the ACM, 1976; 19: 542–546.

    Article  Google Scholar 

  5. Greene N. Environment mapping and other applications of world projections. IEEE Computer Graphics and Applications, 1986; 6 (11): 21–29.

    Google Scholar 

  6. Catmull EE. A Subdivision Algorithm for Computer Display of Curved Surfaces. PhD thesis, Dept. of Computer Science, University of Utah, 1974.

    Google Scholar 

  7. Williams L. Pyramidal parametrics. ACM/SIGGRAPH Computer Graphics, 1983; 17 (3): 1–11.

    Article  Google Scholar 

  8. Crow FC. Summed-area tables for texture mapping. ACM/SIGGRAPH Computer Graphics 1984; 18: 207–212.

    Article  Google Scholar 

  9. Glassner A. Adaptive precision in texture mapping. ACM/SIGGRAPH Computer Graphics, 1986; 20: 297–306.

    Article  Google Scholar 

  10. 1Perlin K, and Hoffert E. Hypertexture. ACM/SIGGRAPH Computer Graphics, 1989; 23 (3): 253–262.

    Google Scholar 

  11. Schachter B. Long crested wave models. Computer Graphics and Image Processing, 1980; 12: 187–201.

    Article  Google Scholar 

  12. Peachey DR. Solid texturing of complex surface. ACM/SIGGRAPH Computer Graphics, 1985; 19 (3): 279–286.

    Article  Google Scholar 

  13. Perlin K. An image synthesizer. ACM/SIGGRAPH Computer Graphics, 1985; 19 (3): 287–296.

    Article  Google Scholar 

  14. Lewis JP. Algorithms for solid noise synthesis. ACM/SIGGRAPH, 1989; 23 (3): 263–270.

    Article  Google Scholar 

  15. Worley S. A cellular texture basis function. ACM/SIGGRAPH, 1996; 30: 291–294.

    Google Scholar 

  16. Heeger DJ, Bergen JR. Pyramid-based texture analysis/synthesis. ACM/SIGGRAPH, 1995; 29 (2): 229–238.

    Google Scholar 

  17. Ghazanfarpour D, Dischler JM. Spectral analysis for automatic 3-D texture generation. Computer and Graphics, 1995; 19 (3): 413–422.

    Article  Google Scholar 

  18. Ghazanfarpour D, Dischler JM. Generation of 3D texture using multiple 2D models analysis. In: Proc. EUROGRAPHICS, 1996; 15(3):C331-C323.

    Google Scholar 

  19. Worley SP, Hart JC. Hyper-rendering of hyper-textured surfaces. In: Proc. Implicit Surfaces, 1996: 99–104.

    Google Scholar 

  20. Danielsson PE. Euclidean distance mapping. Computer Graphics and Image Processing, 1980; 14: 227–248.

    Article  Google Scholar 

  21. Borgefors G. Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 1986; 34 (3): 344–371.

    Article  Google Scholar 

  22. Paglieroni DW. Distance transforms: Properties and machine vision applications. CVGIP: Graphical models and Image Processing, 1992; 54(1):56- 74.

    Google Scholar 

  23. Payne BA, Toga AW. Distance field manipulation of surface models. IEEE Computer Graphics and Applications, 1992; 12 (1): 65–71.

    Article  MATH  Google Scholar 

  24. Herman GT, Zheng J, Bucholtz CA. Shape-based interpolation. IEEE Computer Graphics and Applications, 1992; 12 (3): 69–79.

    Article  Google Scholar 

  25. Ragnemalm I. Neighbourhoods for distance transformations using ordered propagation. CVGIP: Image Understanding, 1992; 53 (3): 399 - 409.

    Article  Google Scholar 

  26. Yagel R, Shi Z. Accelerating volume animation by space-leaping. In: Proc. IEEE Visualization, 1993; 62–69.

    Google Scholar 

  27. Cohen D, Sheffer Z. Proximity clouds - An acceleration technique for 3D grid traversal. The Visual Computer, 1994; 11: 27–38.

    Article  Google Scholar 

  28. Breu H, Gill J, Kirkpatrick D, Werman M. Linear time Euclidean distance transform algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995; 17 (5): 529–533.

    Article  Google Scholar 

  29. Semwal SK, Kvarnstrom H. Directed safe zones and the dual extent algorithms for efficient grid traversal during ray tracing. Graphics Interface, 1997; 76–87.

    Google Scholar 

  30. Cohen-Or D, Levin S, Solomovici A. Three-dimensional distance field metamorphosis. ACM Transactions on Graphics, 1998; 17 (2): 116 - 141.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Satherley, R., Jones, M.W. (2000). Extending Hypertextures to Non-Geometrically Definable Volume Data. In: Chen, M., Kaufman, A.E., Yagel, R. (eds) Volume Graphics. Springer, London. https://doi.org/10.1007/978-1-4471-0737-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0737-8_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-192-4

  • Online ISBN: 978-1-4471-0737-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics