Advertisement

Pseudo-BCK Algebras: An Extension of BCK Algebras

  • George Georgescu
  • Afrodita Iorgulescu
Part of the Discrete Mathematics and Theoretical Computer Science book series (DISCMATH)

Abstract

We extend BCK algebras to pseudo-BCK algebras, as MV algebras and BL algebras were extended to pseudo-MV algebras and pseudo-BL algebras, respectively. We make the connection with pseudo-MV algebras and with pseudo-BL algebras.

Keywords

Fuzzy Logic Product Algebra Partial Order Relation Strong Unit Basic Fuzzy Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88 (1958), 467–490.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    R. Cignoli, I.M.L. D’Ottaviano, D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer, Volume 7, 2000.Google Scholar
  3. 3.
    R. Cignoli, A. Torrens, An algebraic analysis of product logic, Centre de Recerca Matematica, Barcelona, Preprint No. 363, 1997.Google Scholar
  4. 4.
    A. Di Nola, G. Georgescu, A. lorgulescu, Pseudo-BL algebras: Part I, Mult. Val. Logic,to appear.Google Scholar
  5. 5.
    A. Di Nola, G. Georgescu, A. lorgulescu, Pseudo-BL algebras: Part II, Mult. Val. Logic,to appear.Google Scholar
  6. 6.
    A. Dvurečnskij, Commutativity of atomic pseudo MV-algebras, manuscript.Google Scholar
  7. 7.
    A. Dvurel;enskij, Pseudo MV-algebras are intervals in l-groups, submitted.Google Scholar
  8. 8.
    P. Flondor, G. Georgescu, A. lorgulescu, Pseudo-t-norms and pseudo-BL algebras, Soft Computing,to appear.Google Scholar
  9. 9.
    G. Georgescu, A. lorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, The Proceedings of the Fourth International Symposium on Economic Informatics, Bucharest, Romania, May (1999), 961–968.Google Scholar
  10. 10.
    G. Georgescu, A. Iorgulescu, Pseudo-MV algebras, Mult. Val. Logic (A special issue dedicated to the memory of Cr.C. Moisil), 6 1–2 (2001), 95–135.MathSciNetMATHGoogle Scholar
  11. 11.
    G. Georgescu, A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, Abstracts of The Fifth International Conference FSTA 2000, Slovakia, February (2000), 90–92.Google Scholar
  12. 12.
    P. Hájek, Metamathematics of fuzzy logic, Inst. of Comp. Science, Academy of Science of Czech Rep., Technical report 682 (1996).Google Scholar
  13. 13.
    P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Acad. Publ., Dordrecht, 1998.Google Scholar
  14. 14.
    P. Hájek, Basic fuzzy logic and BL-algebras, Soft computing, 2 (1998), 124–128.Google Scholar
  15. 15.
    P. Hájek, L. Godo, F. Esteva, A complete many-valued logic with product-conjunction, Arch. Math. Logic, 35 (1996), 191–208.MathSciNetMATHGoogle Scholar
  16. 16.
    Y. Imai, K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42 (1966), 19–22.MATHCrossRefGoogle Scholar
  17. 17.
    K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica, 23 1 (1978), 1–26.MATHGoogle Scholar
  18. 18.
    Gr.C. Moisil, Essais sur les Logiques Non-chryssippiennes, Bucarest, 1972.Google Scholar
  19. 19.
    D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japonica, 31 6 (1986), 889–894.MathSciNetMATHGoogle Scholar
  20. 20.
    D. Mundici, Interpretation of AF C’-algebras in Lukasiewicz sentential calculus, J. Funct. Anal., 65 (1986), 15–63.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    A.N. Prior, Formal Logic, Oxford, 2nd ed. 1962.Google Scholar
  22. 22.
    E. Turunen, S. Sessa, Local BL-algebras, Mult. Val. Logic (A special issue dedicated to the memory of Gr.C. Moisil), 6 1–2 (2001), 229–250.Google Scholar

Copyright information

© Springer-Verlag London Limited 2001

Authors and Affiliations

  • George Georgescu
    • 1
  • Afrodita Iorgulescu
    • 2
  1. 1.Institute of MathematicsBucharestRomania
  2. 2.Department of Computer ScienceAcademy of Economic StudiesBucharestRomania

Personalised recommendations