Metabolism of Chemotherapeutic Drugs by Maternal and Conceptus Tissues

  • Mrinal K. Sanyal


Tumor cells are genetically transformed clones of cells.1–3 They divide vigorously under favorable conditions with doubling times ranging from several hours to years, invade host organs, attract blood vessels, secrete lysis materials and derive nutrients from the host. Tumors can be located in any body location, or metastasize by dispersal of cells to different areas, or may exist in the systemic blood circulation. The neoplastic tissue differentiation is pathological, capable of averting immune surveillance and acquiring mechanisms to destroy host tissues. Uncontrolled growth of cancer during pregnancy diverts resources from the mother and from the developing conceptus.


Chemotherapeutic Drug Human Placenta Trophoblast Cell Cytochrome P450 Enzyme Epoxide Hydrolase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruddon, R. Cancer Biology, 3rd edn, Oxford University Press, Oxford, 1995Google Scholar
  2. 2.
    Franks, L. M. and Teich, N. M. Introduction to Cellular and Molecular Biology of Cancer. 3rd edn, Oxford University Press, Oxford, 1997Google Scholar
  3. 3.
    Verschraegen, C. F., Dhingra, K. and Jones, L. A. Biology of Gynecologic Cancer. In: Kavanaugh, J. J., Singletary, S. E., Eoinhorn, N. and DePetriello, A. D. (eds), Cancer in Women Blackwell Science, Oxford, 1998: 3–29Google Scholar
  4. 4.
    Chamberlain, G. and Pipkin, F. B. (eds) Clinical Physiology in Obstetrics, 3rd edn, Blackwell Science, Oxford, 1998Google Scholar
  5. 5.
    Bertino, J. R. Antineoplastic Drugs. In: Smith C. M. and Raynard, A. M. (eds), Text Book of Pharmacology, W. B. Saunders, Philadelphia, 1992: 941–63Google Scholar
  6. 6.
    Devita, V. T. Principles in Cancer Management. In: DeVita, V. T. Jr., Hellman, S. and Rosenberg, S. A. (eds), Cancer Principles and Practice of Oncology, 5th edn, Volume 1, Lippincott-Raven, Philadelphia, 1997: 333–47Google Scholar
  7. 7.
    Moore, M. J. and Goldenberg, G. J. Antineoplastic Drugs. In: Kalant, H. and Roschlau, W. H. E. (eds), Principles of Medical Pharmacology, 6th edn, Oxford University Press, New York, 1998: 759–74Google Scholar
  8. 8.
    Valley, A. W. and Balmer, C. M. Cancer Treatment and Chemotherapy. In: DiPiro, J. T., Talbert, R. L., Yee, G. C. et al. (eds), Pharmcotherapy–Pathological Approach, Appleton & Lang, Stamford, CT, 1999: 1957–2012Google Scholar
  9. 9.
    Stock, M. K. and Metcalf, J. Maternal Physiology during Gestation. In: Knobil, E. and Neill, J.D. (eds), The Physiology of Reproduction, 2nd edn, Volume 2, Raven Press, New York, 1994: 947–83Google Scholar
  10. 10.
    Duvekot, J. J. and Peeters, L. L. H. Very Early Changes in Cardiovascular Physiology. In: Chamberlain, G. and Pipkin, F. B. (eds), Clinical Physiology in Obstetrics, 3rd edn, Blackwell Science, Oxford, 1998: 3–32Google Scholar
  11. 11.
    Ogren, L. and Talamantes, F., Placenta as an Endocrine Organ: Polypeptides. In: Knobil, E. and Neill, J.D. (eds), The Physiology of Reproduction, 2nd edn, Volume 2, Raven Press, New York, 1994: 875–945Google Scholar
  12. 12.
    Chard, T. Placental Metabolism. In: Chamberlain, G. and Pipkin, F. B. (eds), Clinical Physiology in Obstetrics, 3rd edn, Blackwell Science, Oxford, 1998: 419–35Google Scholar
  13. 13.
    Manyonda, I. T. The Immune System. In: Chamberlain, G. and Pipkin, F. B. (eds), Clinical Physiology in Obstetrics, 3rd edn, Blackwell Science, Oxford, 1998: 129–162Google Scholar
  14. 14.
    Sanyal, M. K., Brami, C. J., Bischof, P. et al. Immunoregulatory activity in supernatant from cultures of normal trophoblast cells of the first trimester. Am. J. Obstet. Gynecol. 1989; 161: 446–453PubMedCrossRefGoogle Scholar
  15. 15.
    Freedman, R. S., Kudelka, A. P., Verschraegan, C. F. and Platsoucas, C. D. Progress toward Tumor Specific Immunity in Carcinoma of the Ovary and Breast. In: Kavanaugh, J. J., Singletary, S. E., Eoinhorn, N. and DePetriello, A. D. (eds), Cancer in Women, Blackwell Science, 1998: 30–53Google Scholar
  16. 16.
    Evans, A. C. Jr. and Berchuck, A. Tumor Markers. In: Hoskins, W. J., Parez, C. A. and Young, R. C. (eds), Principles and Practice of Gynecologic Oncology, 2nd edn, Lippincott-Raven, Philadelphia, 1997: 177–95Google Scholar
  17. 17.
    Alessandro, R., Bicher, A. and Kohn, E. Tumor Invasion and Metastases. In: Hoskins, W. J., Parez, C. A. and Young, R. C. (eds), Principles and Practice of Gynecologic Oncology, 2nd edn, Lippincott-Raven, Philadelphia, 1997: 87–106Google Scholar
  18. 18.
    Williams, P. L. (ed.) Gray’s Anatomy, Volume 3. Embryology and Development. Churchill Livingstone, New York, 1995: 166–73Google Scholar
  19. 19.
    Benirscke, K. and Kaufman, P. Pathology of Human Placenta, 2nd edn, Springer-Verlag, New York, 1990CrossRefGoogle Scholar
  20. 20.
    Jones, C. J. P. and Fox, H. Ultrastructure of the normal human placenta. Electron. Microscop. Rev. 1991; 4: 120–78Google Scholar
  21. 21.
    Teasdale, F. Gestational changes in the functional structure of the human placenta in relation to fetal growth: a morphometric study. Am. J. Obstet. Gynec. 1980; 137: 560–8PubMedGoogle Scholar
  22. 22.
    Teasdale, F. and Jean-Jacques, G. Morphometric evaluation of the microvillous surface enlargement factor in the human placenta from mid-gestation to term. Placenta. 1985; 6: 375–81PubMedCrossRefGoogle Scholar
  23. 23.
    Van der Velde, W. J., Peereboom-Stegeman, J. H. J., Treffers P. E. and James, J. Basal lamina thickening in the placentae of smoking mothers. Placenta 1983; 6: 329–40Google Scholar
  24. 24.
    Cantle, S. J., Kaufman, P., Luckhadt, M. and Schweikart, G. Interpretation of syncytial sprout and bridges in the human placenta. Placenta 1987; 8: 221–34PubMedCrossRefGoogle Scholar
  25. 25.
    Kaufman, P., Luckhardt, M., Schweikhart, G. and Cantle, S. J. Cross-sectional feature and three dimensional structure of human placental villi. Placenta 1987; 8: 235–47CrossRefGoogle Scholar
  26. 26.
    Morriss, F. H., Boyd, R. D. H. and Mahendran, D. Placental Transport. In: Knobil, E. and Neill, J.D. (eds), The Physiology of Reproduction, 2nd edn, Volume 2, Raven Press, New York, 1994: 813–861Google Scholar
  27. 27.
    Sibley, C. P. and Boyd, R. D. H. Mechanism of Transfer Across the Human Placenta. In: Polin, R. A. and Fox. H. (eds), Fetal and Maternal Physiology, W. B. Saunders, Philadelphia, 1992: 62–74Google Scholar
  28. 28.
    Mihaly, G. W. and Morgan, D. J. Placental drug transfer: effect of gestational age and species. Pharmacol. Therap. 1984; 23: 253–66CrossRefGoogle Scholar
  29. 29.
    Patten, B. M. Human Embryology, 3rd edn, McGraw-Hill, New York, 1968: 500–83Google Scholar
  30. 30.
    Heymann, M. A. Fetal Cardiovascular Physiology. In: Creasy, R. K. and Resnik, R. (eds) Maternal-Fetal Medicine, W. B. Saunders, Philadelphia, 1984: 276–87Google Scholar
  31. 31.
    Benet, L. Z., Koetz, D. L. and Sheiner, L. B. Pharmacokinetics. In: Hardman, J. G. and Limbird, L. E. (eds), Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 9th edn, McGraw-Hill, New York, 1996: 3–27Google Scholar
  32. 32.
    Ross, E. M. Pharmacodynamics. In: Hardman, J. G. and Limbird, L. E. (eds), Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 9th edn, McGraw-Hill, New York, 1996: 29–41Google Scholar
  33. 33.
    Ratain, M. J. Pharmacokinetics and Pharmacodynamics. In: DeVita, V. T. Jr., Hellman, S. and Rosenberg, S. A. (eds) Cancer Principles and Practice of Oncology, 5th edn, Lippincott-Raven, Philadelphia, 1997; 375–85Google Scholar
  34. 34.
    Reynolds, F. Pharmacokinetics. In: Chamberlain, G. and Pipkin, F. B. (eds), Clinical Physiology in Obstetrics, 3rd edn, Blackwell Science, Oxford, 1998: 239–260Google Scholar
  35. 35.
    Riddick, D. S. Drug Biotranformation. In: Kalant, H. and Roschlau, W. H. E. (eds) Principles of Medical Pharmacology, 6th edn, Oxford University Press, New York, 1998: 38–54Google Scholar
  36. 36.
    Wong, L. L. Cytochrome P450 monoxygenases. Curr. Opinion in Chem. Biol. 1998; 2: 263–8CrossRefGoogle Scholar
  37. 37.
    Hinson, J. A. and Forkert, P. G. Phase II enzymes and bioactivation. Can. J. Physiol. Pharmacol. 1995; 73: 1407–13PubMedGoogle Scholar
  38. 38.
    Nebert, D. W., Nelson, D. R., Adesnik, M. et al. The P450 gene superfamily. Update on the naming of new genes and nomenclature of chromosomal loci. DNA 1989; 8: 1–13PubMedCrossRefGoogle Scholar
  39. 39.
    Nelson, D. R., Kamataki, T., Waxman, D. J. et. al. The P450 superfamily: update on new sequence, gene mapping, accession numbers, early trivial names of enzymes and nomenclature. DNA Cell Biol. 1993; 12: 1–51PubMedCrossRefGoogle Scholar
  40. 40.
    Black, S. D. Cytochrome P450 Structure and Function. In: Schenkman, J. B. and Greim, H. (eds), Handbook of Experimental Pharmacology, Springer, Berlin, 1993: 155–68Google Scholar
  41. 41.
    Shimada, T., Mimura, M., Inoue, K. et al. Cytochrome P450 dependent drug oxidation activities in liver microsomes of various animal species including rats, guinea pigs, dogs, monkeys and humans. Arch. Toxicol. 1997; 71: 401–8PubMedCrossRefGoogle Scholar
  42. 42.
    Kivisto, K. T., Kroemer, H. K. and Eichelbaum, H. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications in drug interactions. Br. J. Clin. Pharmacol. 1995; 40: 523–30PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Guengerich, F. P. Role of cytochrome P450 enzymes in drug-drug interactions. Adv. Pharmacol. 1997; 43: 7–35PubMedCrossRefGoogle Scholar
  44. 44.
    Clarke, L. and Waxman, D. J. Oxidative metabolism of cyclophosphamide: identification of hepatic monoxygenase catalysis of drug activation. Cancer Res. 1989; 49: 2344–50PubMedGoogle Scholar
  45. 45.
    Chang, T. K., Weber, G. F., Crespi, C. L. and Waxman, D. J. Differential activation of cyclophosphamide and ifosfamide by cytochrome P450 2B and 3A in human liver microsomes. Cancer Res. 1993; 53: 5629–37PubMedGoogle Scholar
  46. 46.
    Bohnenstengel, F., Hofmann, U., Eichelbaum, M. and Kroemer, H. K. Characterization of the cytochrome P450 involved in side chain oxidation of cyclophosphamide in humans. Eur. J. Clin. Pharmacol. 1996; 51: 297–301PubMedCrossRefGoogle Scholar
  47. 47.
    Chang, T. K., Yu, L., Goldstein, J. A. and Waxman, D. J. Identification of polymorphically expressed CYP 2C19 and the wild type CYP269–ILE359 allele as low Km catalysis of cyclophosphamide and ifosfamide activation. Pharmacogenetics 1997; 7: 211–21PubMedCrossRefGoogle Scholar
  48. 48.
    Ren, S., Yang, J. S., Kalhorn, T. F. and Slattery, J. T. Oxidation of cyclophosphamide to 4hydroxycyclophosphamide and deschlooethylcyclophosphamide in human liver microsomes. Cancer Res. 1997; 57: 4229–35PubMedGoogle Scholar
  49. 49.
    Hengstker, J. G., Hengst, A., Fuchs, A. et al. Induction of crosslinking and DNA strand lesion by cyclophosphamide after activation by cytochrome P450 2B1. Mut. Res. 1997; 373: 215–23CrossRefGoogle Scholar
  50. 50.
    Pariani, S., Buscaglia, M., Piantanide, M., and Simoni, G. Cyclophosphamide increases frequency of sister chromatid exchanges in direct preparations of human chorionic villi in the absence of supplementary enzymatic activation systems. J. Med. Genetics 1992; 29: 109–11CrossRefGoogle Scholar
  51. 51.
    Cuisido, L., Pujol, R. Egocue, J. and Garcia, M. Cyclophosphamide-induced synaptonemal complex damage during meiotic prophase of female Rattus norvgicus. Mut. Res. 1995; 329: 131–41Google Scholar
  52. 52.
    Cutts, S. M., Persons, P.G., Saturn,R. A. and Phillips, D. R. Adriamycin-induced DNA adducts inhibits the DNA interaction of transcription factors and RNA polymerase. J. Biol. Chem. 1996; 271: 5422–9Google Scholar
  53. 53.
    Boyer, M. J. Bioreductive agents: a clinical update. Oncology Res. 1997; 9: 391–5Google Scholar
  54. 54.
    Tomaz, M. and Palom, Y. The mitomycin bioreductive antitumor agents: crossl-inking and alkylation of DNA as the molecular basis of their activity. Pharmacol. Ther. 1997; 76: 73–87CrossRefGoogle Scholar
  55. 55.
    Masters, J. R., Know, R. J., Hartley, J. A., et al. KW-2149 (7-N-[2-[gamma-L-gluta-amyl amino] ethyl dithioethyl] mitomycin C) a new mitomycin C analogue activated by serum. Biochem. Pharmacol. 1997; 53: 279–85PubMedCrossRefGoogle Scholar
  56. 56.
    Haffty, B. G., Son, Y. H., Papac, R. et al. Chemotherapy as an adjunct to radiation in the treatment of squamous cell carcinoma of the head and neck: results of Yale mitomycin randomized trial. J. Clin. Oncol. 1997; 15: 268–76PubMedGoogle Scholar
  57. 57.
    Raymond, E., Favivre, S., Woynarowski, J. M. and Chaney, G. G. Oxiplatin: mechanism of action and antineoplastic activity. Semin.Oncol. 1998; 25: (2 suppl. 5): 4–12PubMedGoogle Scholar
  58. 58.
    Nagani, N., Okuda, R. Kinoshita, M. and Ogata, H. Decomposition kinetics of cisplatin in human biological fluids. J. Pharmacy Pharmacol. 1994; 48: 918–24CrossRefGoogle Scholar
  59. 59.
    Saris, C. P., Van der Vaart, P. J., Rietbroek, R. C. and Blommaerrt, F. A. In vitro formation of DNA adducts by cisplatin, loboplatin, and oxoplatin in calf thymus DNA in solution and in cultured human cells. Carcinogenesis 1996; 17: 2763–9PubMedCrossRefGoogle Scholar
  60. 60.
    Mani, C., Gelboin, H. V., Park, S. S. et al. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P 450 catalysed N-demethylation and 4-hydroxylation. Drug Metab. Dispos. 1993; 21: 645–56Google Scholar
  61. 61.
    Jordan, V. C. Tamoxifen: Toxicities and drug resistance during the treatment and prevention of breast cancer. Ann. Rev. Pharmacol. Toxicol. 1995; 35: 195–211CrossRefGoogle Scholar
  62. 62.
    Crewe, H. K., Ellis, S. W., Lennard, M. S. and Tucker, G. T. Variable contribution of cytochrome P 450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem. Pharmacol. 1997; 53: 171–8PubMedCrossRefGoogle Scholar
  63. 63.
    Dorr, R. T. Pharmacology of Taxanes. Pharmacotherapy. 1997; 17 (5 pt 2): S96–104Google Scholar
  64. 64.
    Harris, J. W., Rahman, A., Kim, B. et al. Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzymes. Cancer Res. 1994; 54: 4026–35PubMedGoogle Scholar
  65. 65.
    Walle, T. Assays of CYP2C8 and CYP3A4 mediated metabolism of taxol in vivo and vitro. Methods in Enzymology 1996; 272: 145–51PubMedCrossRefGoogle Scholar
  66. 66.
    Kumar, G. N., Oatis, J. E. Jr., Thornberg, K. R. et al. 6-alpha-hydroxytaxol: isolation and identification of the major metabolite of taxol by human liver microsomes. Drug Metab. Dispos. 1994; 22: 177–9Google Scholar
  67. 67.
    Kumar, G. N., Walle, U. K. and Walle, T. Cytochrome P450 3A-mediated human liver microsomal taxol 6 alpha-hydroxylation. J. Pharmacol. Exp. Ther. 1994; 268: 1160–65PubMedGoogle Scholar
  68. 68.
    Royer, I., Monsarrat, B., Sonnier, M., et al. Metabolism of docetaxel by human cytochrome P450: interactions with paclitaxel and other neoplastic drugs. Cancer Res. 1996; 56: 58–65PubMedGoogle Scholar
  69. 69.
    Gidding, C. E., Kellie, S. J., Kamps, W. A. and Graff, S. S. Vincristine revisited. Crit. Rev. Oncol. 1999; 29: 267–87CrossRefGoogle Scholar
  70. 70.
    Zhou-Pan, X., R., Serree, E., Zhou, X. J. et al. Involvement of human liver cytochrome P4503A in vinblastin metabolism: drug interactions. Cancer Res. 1993; 53: 5121–6PubMedGoogle Scholar
  71. 71.
    Lobert, S., Vulevic, B. and Correica, J. J. Interaction of vinca alkaloids with tubulin: a comparison of vinblastin, vincristin and vinorelbine. Biochemistry 1996; 35: 6808–14CrossRefGoogle Scholar
  72. 72.
    Panda, D., Miller, H. P., Islam, K. and Wilson, L. Stabilization of microtubule dynamics by estramustine by binding to a novel site in tubulin: a possible mechanistic basis for its antitumor action. Proc. Natl. Acad. Sci. USA 1997; 94: 10560–4PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Hagen, B., Walseth, P., Walstad, P. et. al. Single and repeated dose pharmacokinetics of thio-TEPA in patients treated for ovarian cancinoma. Cancer Chemotherap. Phamocol. 1987; 19: 143–8Google Scholar
  74. 74.
    Ng, S. and Waxman, D. J. Activation of thio-TEPA cytotoxicity toward human breast cancer cells by hepatic cytochrome P450. Int. J. Oncol. 1993; 2: 731–8PubMedGoogle Scholar
  75. 75.
    Chang, T. K. H., Chen, G. and Waxman, D. J. Modulation of thiotepa antitumor activity in vivo by alteration of liver cytochrome P450 catalyzed drug metabolism. J. Pharmacol. Exp. Therap. 1995; 274: 270–5Google Scholar
  76. 76.
    Raha, A. and Tew, K. D. Glutathione S-transferase. Cancer Treat. and Res. 1996; 87: 83–122CrossRefGoogle Scholar
  77. 77.
    Ferrandina, G., Scambia, G., Damia, G. et al. Glutathione S-transferase activity in epithelial ovarian cancer: association with response to chemotherapy and disease outcome. Ann. Oncol. 1997; 8: 34350CrossRefGoogle Scholar
  78. 78.
    Tanner, B., Hengstler, J. G. Dietrich, B. et al. Glutathione, glutathione S-transferase alpha and pi, and aldehyde dehydrogenase content in relationship to drug resistance in ovarian cancer. Gynec. Oncol. 1997; 65: 54–62CrossRefGoogle Scholar
  79. 79.
    Renes, J., deVries, E. G., Nienhuis, E. F et al. ATP and glutathione-dependent transport of chemotherapeutic drugs by multidrug resistant protein MRPI. Br. J. Pharmacol. 1999; 126: 681–8PubMedCentralPubMedGoogle Scholar
  80. 80.
    Aran, J. M., Pastan, I. and Gottesman, M. M. Therapeutic strategies involving the multidrug resistance phenotype: the MDR1 gene as target, chemoprotectant, and selectable marker in gene therapy. Adv. Phamacol. 1999; 46: 1–42Google Scholar
  81. 81.
    Deeley, R. G. and Cole, S. P. C. Function, evolution and structure of multidrug resistance protein (MRP). Semin. Cancer Biol. 1997; 8: 193–204PubMedCrossRefGoogle Scholar
  82. 82.
    Sancar, A. DNA excision repair. Ann. Rev. Biochem. 1996; 65: 43–81PubMedCrossRefGoogle Scholar
  83. 83.
    Crul, M., Schellans, J. H. M, Beijnen, J. H.and Maliepaard, M. Cisplatin resistance and DNA repair. Cancer Treat. Reviews 1997; 23: 341–66CrossRefGoogle Scholar
  84. 84.
    Filler, R. and Lew, K. J. Developmental onset of mixed function oxidase activity in preimplantation mouse embryos. Proc. Natl. Acad. Sci. USA 1981; 78: 6991–5PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Pedersen, R. A., Meneses, J., Spindle, A. et al. Cyotchrome P450 metabolic acivity in embryonic and extraembryonic tissue lineage of mouse embryos. Proc. Natl. Acad. Sci. USA 1985; 82: 3311–15PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Dey, A., Westphal, H. and Nebert, D. W. Cell specific induction of mouse cyplal mRNA during development. Proc. Natl. Acad. Sci. USA 1989; 86: 7446–50PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Berry, D. L., Zachariah, P. K., Namkung, M. J. and Juchau, M. R. Transplacenal induction of carcinogen by hydroxylation system with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol. Appl. Pharmacol. 1976; 36: 569–84PubMedCrossRefGoogle Scholar
  88. 88.
    Wu, D. and Cederbaum, A. I. Expression of P4502E1 in rat fetal hepatocyte culture. Mol. Pharmacol. 1996; 49: 802–807PubMedGoogle Scholar
  89. 89.
    Borlakoglu, J. T., Scott, A., Henderson, C. J. and Wolf, C. R. Expression of P450 isoenzymes during rat liver organogenesis. Int. J. Biochem. 1993; 25: 1659–68PubMedGoogle Scholar
  90. 90.
    Juchau, M. R., Harris, C., Stark, K. L. et al. Cytochrome P450-dependent bioactivation of prodysmorphogens in cultured conceptuses. Reprod. Toxicol. 1991; 5: 259–64PubMedCrossRefGoogle Scholar
  91. 91.
    Juchau, M. R., Lee, Q. P. and Fantel, A. G. Xenobiotic biotransformation/bioactivation in organogenesis-stage conceptal tissues: implication for embryotoxicity and teratogenesis. Drug Metab. Rev. 1992; 24: 195–234Google Scholar
  92. 92.
    Sanyal, M. K. and Naftolin, F. In vitro development of mammalian embryo. J. Exp. Zool. 1983; 228: 235–51PubMedCrossRefGoogle Scholar
  93. 93.
    Sanyal, M. K., Kitchin, K. T. and Dixon, R. L. Rat conceptus development in vitro: Comparative effects of alkylating agents. Toxicol. Appl. Pharmacol. 1981; 57: 14–19PubMedCrossRefGoogle Scholar
  94. 94.
    Kitchin, K. T., Schmid, B. P. and Sanyal, M. K. Teratogenicity of cyclophosphamide in a coupled microsomal activating/embryo culture system. Biochem. Pharmacol. 1981; 30: 59–64PubMedCrossRefGoogle Scholar
  95. 95.
    Schmid, B. P., Goulding, E., Kitchin, K. T. and Sanyal, M. K. Assessment of the teratogenic potential of acrolein and cyclophosphamide in a rat embryo culture system. Toxicology 1981; 22: 235–4PubMedCrossRefGoogle Scholar
  96. 96.
    Satish, J., Pratt, B. M., and Sanyal, M. K. Differential dysmorphogenesis induced by microinjection of an alkylating agent into rat conceptuses cultured in vitro. Teratology 1985; 31: 61–72PubMedCrossRefGoogle Scholar
  97. 97.
    Biggers, W. J., Barnea, E. T. and Sanyal, M. K. Anomalous neural differentiation induced by 5bromo-2deoxy-uridine during organogenesis in the rat. Teratology 1987; 35: 63–75PubMedCrossRefGoogle Scholar
  98. 98.
    Lee, Q. P., Fantel, A. G. and Juchau, M. R. Human embryonic cytochrome P450s: phenoxazone ethers as probes for expression of functional isoforms during organogenesis. Biochem. Pharmacol. 1991; 42: 2377–86PubMedCrossRefGoogle Scholar
  99. 99.
    Juchau, M. R. and Yang, H. L. Cytochrome P450-dependent monooxygenase of embryonic/teratogenic chemicals in human embryonic tissues. Fundment. Appl. Toxicol. 1996; 34: 166–8Google Scholar
  100. 100.
    Naftolin, F., Diamond, M. P., Pinter, E., Reece, A. and Sanyal, M. K. A hypothesis concerning the general basis of organogenetic congenital anomalies. Am J. Obstet. Gynecol. 1987; 157: 1–4PubMedCrossRefGoogle Scholar
  101. 101.
    Juchau, M. R. Chemical teratogenesis in humans: biochemical and molecular mechanisms. Prog. Drug Res. 1997; 49: 25–92PubMedGoogle Scholar
  102. 102.
    Juchau, M. R., Boutelet-Bochan, H. and Huang, Y. Cytochrome P450 dependent biotransformation of xenobiotics in human and rodent embryonic tissues. Drug Metab. Rev. 1998; 30: 541–68Google Scholar
  103. 103.
    Wells, P. G. Chemical Teratogenesis. In: Kalant, H. and Roschlau, W. H. E. (eds), Principles of Medical Pharmacology, 6th edn, Oxford University Press, New York, 1998: 873–90Google Scholar
  104. 104.
    Hakkola, J., Pelkonen, O., Pasanen, M. and Raunio, H. Xenobiotic-metabolizing cytochrome P450 enzymes in human feto-placental unit: role in intrauterine toxicity. Crit. Rev.Toxicol. 1998; 28: 3572Google Scholar
  105. 105.
    Yaffe, S. J., Rane, A., Sjoqvist, F. et al. The presence of monooxygenase system in human fetal liver microsomes. Life Sci. 1970; 9: 1189–200CrossRefGoogle Scholar
  106. 106.
    Farrar, H. C. and Blumer, J. L. Fetal effects of maternal drug exposure. Ann. Rev. Pharmacol. Toxicol. 1991; 31: 525–47CrossRefGoogle Scholar
  107. 107.
    Krauer, B. and Dayer, P. Fetal drug metabolism and its possible clinical implication. Clin. Pharmacokinet. 1991; 21: 70–80PubMedCrossRefGoogle Scholar
  108. 108.
    Kitada, M. and Kamataki, T. C. Cytochrome P450 in human fetal liver: significance and fetal specific expression. Drug Metab. Rev. 1994; 26: 305–23Google Scholar
  109. 109.
    Raucy, J. L. and Carpenter, S. J. The expression of xenobiotic metabolizing cytochrome P450 in fetal tissues. J. Pharmacol. Toxicol. Methods 1993; 29: 121–8PubMedCrossRefGoogle Scholar
  110. 110.
    Jones, A. H., Fantel, A. G., Kocan, R. M. and Juchau, M. R. Bioactivation of procarcinogens to muta-gens in human fetal and placental tissues. Life Sci. 1997; 21: 1831–7CrossRefGoogle Scholar
  111. 111.
    Hakkola, J., Pasanen, M. Purkunen, R. et al. Expression of xenobiotic-metabolizing cytochrome P450 forms in human adult and fetal liver. Biochem. Pharmacol. 1994; 48: 59–64PubMedCrossRefGoogle Scholar
  112. 112.
    Murray, G. I., Foster, C. O., Barnes, T. S. et al. Cytochrome P450 lA expression in adult and fetal human liver. Carcinogenesis 1992; 13: 165–9PubMedCrossRefGoogle Scholar
  113. 113.
    McKinnon, R. A., Burgess, W. M., Gonzales, F. J. et al. Species specific expression of CYP4B1 in rabbit and human gastrointestinal tissues. Pharmacogenetics 1994; 4: 260–70PubMedCrossRefGoogle Scholar
  114. 114.
    Shimada, T., Yamazaki, H., Mimura, M., et al. Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal livers and adult lungs. Drug Metab. Dispos. 1996; 24: 515–22Google Scholar
  115. 115.
    Guengerich, F. P., Shimada, T., Yamazaki, H. and Mimura, M. Comparison of cytochrome P450 enzymes and their activities in human fetal and adult liver. Fund. Appl. Toxicol. 1996; 34: 168–72Google Scholar
  116. 116.
    Yang, H. L., Namkung, M. J. and Juchau, M. R. Expression of functional cytochrome P4501A1 in human embryonic hepatic tissues during organognesis. Biochem. Pharmacol. 1995; 49: 717–26PubMedCrossRefGoogle Scholar
  117. 117.
    Treluyer, J. M., Jacqz-Aigrain, E., Alvarez, F. and Cresteil, T. Expression of CYP 2D6 in developing human liver. Eur. J Biochem. 1991; 202: 583–8PubMedCrossRefGoogle Scholar
  118. 118.
    Gilham, D. E., Cairns, W., Paine, M. J. I. et al. Metabolism of MTPT by cytochrome P450 2D6 and demonstration of 2D6 mRNA in human fetal and adult brain by in situ hybridization. Xenobiotica 1997; 27: 111–25PubMedCrossRefGoogle Scholar
  119. 119.
    Carpenter, S. P., Lasker, J. M. and Raucy, J. L. Expression, induction and catalytic activity of the ethanol induced cytochrome P450 (CYP 2E1) in human fetal liver. Molec. Pharmacol. 1996; 49: 260–8Google Scholar
  120. 120.
    Jones, S. M., Boobis, A. R., Moore, G. E. and Stanier, P. M. Expression of CYP2E1 during human fetal development: methylation of the CYP2E1 gene in human fetal and adult liver samples. Biochem. Pharmacol. 1992; 43: 1876–80PubMedCrossRefGoogle Scholar
  121. 121.
    Boutelet-Bochan, H., Huang, Y. and Juchau, M. R. Expression of CYP 2E1 during embryogenesis and fetogenesis in human cephalic tissues: implication for the fetal alcohol syndrome. Biochem. Biophysis. Res. Commun. 1997; 238: 443–7CrossRefGoogle Scholar
  122. 122.
    Vieira, I., Sonnier, M. and Cresteil, T. Developmental expression of CYP 2E1 in the human liver. Hypermethylation control of gene expression during the neonatal period. Eur. J. Biochem. 1996; 238: 476–83PubMedCrossRefGoogle Scholar
  123. 123.
    Yang, H. L., Lee, Q. P., Rettie, A. E. and Juchau, M. R. Functional CYP3A isoform in human embryonic tissues: expression during organogenesis. Molec. Phamacol. 1994; 46: 922–9Google Scholar
  124. 124.
    Schuetz, J. D., Beach, D. L. and Guzelian, P. S. Selective expression of cytochrome P4503A mRNAs in embryonic and adult human liver. Pharmacogenetics 1994; 4: 11–20PubMedCrossRefGoogle Scholar
  125. 125.
    Greuet, J., Pichard, L., Bonfils, C. et al. The fetal specific gene CYP 3A7 is inducible by rifampcin in adult human hepatocytes in primary culture. Biochem. Biophys. Res. Commun. 1996; 225: 689–94PubMedCrossRefGoogle Scholar
  126. 126.
    Schuetz, J. D., Schuetz, E. G., Thottassery, J. V. et al. Identification of novel dexamethasone responsive enhancer in the CYP 3A5 gene and its activation in human and rat liver cells. Mol. Pharmacol. 1996; 49: 63–72PubMedGoogle Scholar
  127. 127.
    LaCroix, D., Sonnier, M., Moncion, A., Cheron, G. and Cresteil, T. Expression of CYP 3A in the human liver. Evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur. J. Biochem. 1997; 247: 625–34PubMedCrossRefGoogle Scholar
  128. 128.
    Juchau, M. R. Drug biotransformation in the placenta. Pharmacol. Ther. 1980; 8: 501–24PubMedCrossRefGoogle Scholar
  129. 129.
    Pasanen, M. and Pelkonen, O. Human placental xenobiotic and steroid biotransformations catalyzed by cytochrome P450, epoxide hydrolase and glutathione S-transferase activities and their relationships to maternal cigarette smoking. Drug Metab. Rev. 1989; 21: 427–61Google Scholar
  130. 130.
    Pasanen, M. and Pelkonen, O. The expression and environmental regulation of P450 enzymes in human placenta. Crit. Rev. Toxicol. 1994; 24: 211–29PubMedCrossRefGoogle Scholar
  131. 131.
    Juchau, M. R. Human placental hydroxylation of 3,4-benzo(a)pyrene during early gestation and at term. Toxicol. Appl. Pharmacol. 1971; 18: 665–75PubMedCrossRefGoogle Scholar
  132. 132.
    Juchau, M. R. and Smuckler, E. A. Subcellular localization of human placental aryl hydrocarbon hydroxylase. Toxicol. Appl. Pharmacol. 1973; 26: 163–79PubMedCrossRefGoogle Scholar
  133. 133.
    Manchester, D. K. and Jacoby, E. H. Sensitivity of human placental monooxygenase activity to maternal smoking. Clin. Pharmacol. Ther. 1081; 30: 687–92CrossRefGoogle Scholar
  134. 134.
    Manchester, D. K. and Jacoby, E. H. Decreased placental monooxygenase activities associated with birth defects. Teratology 1984; 30: 31–3PubMedCrossRefGoogle Scholar
  135. 135.
    Gurtoo, H. L., Williams, C. J., Gottlieb, K. et al. Population distribution of placental benz(a)pyrene metabolism in smokers. Int. J. Cancer 1983; 31: 29–37PubMedCrossRefGoogle Scholar
  136. 136.
    Fujino, T., Gottlieb, K, Manchester, D. K. et al. Monoclonal antibody phenotyping of interindividual differences in cytochrome P450-dependent reactions of single and twin placenta. Cancer Res. 1984; 44: 3916–23PubMedGoogle Scholar
  137. 137.
    Huel, G., Girard, F., Nessmann, C. et al. Placental aryl hydrocarbon hydroxylase activity and placental calcification. Toxicology 1992; 71: 257–66PubMedCrossRefGoogle Scholar
  138. 138.
    Pasanen, M., Haaparanta, T., Sundin, M. et al. Immunochemical and molecular biological studies on human placental cigarette smoke inducible cytochrome P450 dependent monooxygenase activities. Toxicology 1990; 62: 175–87PubMedCrossRefGoogle Scholar
  139. 139.
    Hakkola, J., Raunio, H., Purkunen, R. et al. Detection of cytochrome P450 gene expression in human placenta in first trimester pregnancy. Biochem. Pharmacol. 1996; 52: 379–83PubMedCrossRefGoogle Scholar
  140. 140.
    Hakkola, J., Pasanen, M., Hukkanen, J. et al. Expression of xenobiotic-metabolizing cytochrome P450 forms in human full term placenta. Biochem. Pharmacol. 1996; 51: 403–11PubMedCrossRefGoogle Scholar
  141. 141.
    Hakkola, J., Pasanen, M., Pelkonen, O., et al. Expression of CYP1B1 in human adult and fetal tissues and differential ineducability of CYP 1 B 1 and CYP1A1 by Ah receptor ligands in human placenta and cultured cells. Carcinogenesis 1997; 18: 391–7PubMedCrossRefGoogle Scholar
  142. 142.
    Sanyal, M. K., Li, Y. L., Biggers, W. J., Satish, J. and Barnea, E. R. Augmentation of polynuclear aromatic hydrocarbon metabolite of human first trimester pregnancy by cigarette smoke exposure. Am. J. Obstet. Gynecol. 1993; 168: 1587–97PubMedCrossRefGoogle Scholar
  143. 143.
    Sanyal, M. K., Li, Y. L. and Belanger, K. Metabolism of polynuclear aromatic hydrocarbon in human term placenta influenced by cigarette smoke exposure. Reprod. Toxicol. 1994; 8: 411–18PubMedCrossRefGoogle Scholar
  144. 144.
    Sanyal, M. K. and Barnea, E. R. Expression of aryl hydrocarbon hydroxylase (CYP1A1) in human placentas. In: Barnea, E. R. Check, J. H., et al. (eds), Implantation and Early Pregnancy, Parthenon Publishing Group, London, 1994: 379–86Google Scholar
  145. 145.
    Howie, A. F., Hayes, J. D. and Beckett, G. J. Purification of acidic glutathion S-transferase from human lungs, placenta and erthythrocyte and development of specific radioimmunoassay for their measurement. Clin. Chem. Acta. 1988; 177: 65–75CrossRefGoogle Scholar
  146. 146.
    Aiso, S., Yasuda, K., Shiozawa, M., et al. Preparation of monoclonal antibodies to glutathione Stransferase pi application to immunohistochemical study. J. Histochem. Cytochem. 1989; 37: 1247–52PubMedCrossRefGoogle Scholar
  147. 147.
    Manchester, D. K. and Jacoby, E. H. Glutathione S-transferase activities in placentas from smoking and nonsmoking women. Xenobiotica 1982; 12: 543–47PubMedCrossRefGoogle Scholar
  148. 148.
    Pasanen, M and Pelkonen, O. Xenobiotic and steroid metabolizing monoxygenase catalysed by cytochrome P450 and glutathione S-transferase conjugations in the human placenta and their relationship to maternal cigarette smoking. Placenta 1990; 11: 75–85PubMedCrossRefGoogle Scholar
  149. 149.
    Wixtrom, R. N., Silva, M. H. and Hammock, B. D. Cytosolic epoxide hydrolase in human placenta. Placenta 1988; 9: 559–63PubMedCrossRefGoogle Scholar
  150. 150.
    Farin, F. M., Pohlman, T. H. and Omiecinski, C. J. Expression of cytochrome P450s and microsomal epoxide hydrolase in primary cultures of human umblical vein endothelial cells. Toxicol. Appl. Pharmacol. 1994; 124: 1–9PubMedCrossRefGoogle Scholar
  151. 151.
    Manchester, D. K., Gordon, S. K., Golas, C. L. et al. Ah receptor in human placenta: solubilization by molybdate and characterization by binding of 2,3,7,8- tetrachlorobenzo-p-dioxin, 3methylcholanthrene and benzo(a)pyrene. Cancer Res. 1987; 47: 4861–8PubMedGoogle Scholar
  152. 152.
    Sogowa, K., Nakano, R., Kobayashi, A. et al. Possible function of Ah receptor nuclear translocator (Amt) homodimer in transcriptional regulation. Proc. Natl. Acad. Sci. USA 1995; 92: 1936–40CrossRefGoogle Scholar
  153. 153.
    Sotto, F., Seree, E., Khyari, S. E., et al. Tissue-specific expression and methylation of the human CYP2E1 gene. Biochem. Pharmacol. 1994; 48: 1095–103CrossRefGoogle Scholar
  154. 154.
    Rasheed, A., Hines, R. N. and McCarver-May, D. G. Variation in induction of placental ’CYP2E1: possible role is susceptibility to fetal alcohol syndrome. Toxicol. Appl. Pharmacol. 1997; 144: 396–400PubMedCrossRefGoogle Scholar
  155. 155.
    Schuetz, J. D., Kauma, S. and Guzelian, P. S. Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta. J. Clin. Invest. 1993; 92: 1018–24PubMedCentralPubMedCrossRefGoogle Scholar
  156. 156.
    Cummingham, F. G., McDonald, P. C., Gant, N. et al. (eds) Williams Obstetrics, 20th edn, Appleton & Lange, Stamford, CT, 1997: 125–190Google Scholar
  157. 157.
    Ryan, K. J. Biological aromatization of steroids. J. Biol. Chem. 1959; 234: 268–72PubMedGoogle Scholar
  158. 158.
    Diczfalusy, E. and Toren, P. Endocrine functions of human placenta. Vit. Horm. 1961; 19: 229–311CrossRefGoogle Scholar
  159. 159.
    Siiteri, P. K. and MacDonald, P. C. Placental estrogen biosynthesis during human pregnancy. J. Clin. Endocrinol. 1966; 26: 751–61CrossRefGoogle Scholar
  160. 160.
    Baulieu, E. E.and Dray, F. Conversion of ’H-dehydroepiandrosterone (3ß-hydroxysteroid A’androstene-17-one) sulfate to ’H-estrogens in normal pregnant women. J. Clin. Endocrinol. 1963; 23: 1298–301CrossRefGoogle Scholar
  161. 161.
    Canick, J. A. and Ryan, K. J. Cytochrome P450 and aromatization of 16-hydroxytestosterone and androstenedione by human placental microsomes. Mol. Cell. Endocrinol. 1976; 6: 105–15PubMedCrossRefGoogle Scholar
  162. 162.
    Mason, J. I. and Rainey, W. E. Steroidogenesis in the human fetal adrenal: a role for cholesterol synthesized de novo. J. Clin. Endocrinol. Metab. 1987; 64: 140–7PubMedCrossRefGoogle Scholar
  163. 163.
    Simpson, E. R., Mahendroo, M. S., Means, G. D. et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocrn. Rev. 1994; 15: 342–55Google Scholar
  164. 164.
    Means, G. D., Kilgore, M. W., Mahendroo, M. S. et al. Tissue specific promoters regulate aromatase cytochrome P450 gene expression in human ovary and fetal tissues. Mol. Endocrinol. 1991; 5: 2005–13PubMedCrossRefGoogle Scholar
  165. 165.
    Kilgore, M. W., Means, G. D., Mendelson, C. R. and Simpson, E. R. Alternate promotion of aromatase P-450 expression in the human placenta. Mol. Cell Endocrinol. 1992; 83: R9–16PubMedCrossRefGoogle Scholar
  166. 166.
    Kalow, W. and Grant, D. M. Human Pharmacogenetics. In: Kalant, H. and Roschlau, W. H. E. (eds), Principles of Medical Pharmacology, 6th edn, Oxford University Press, New York, 1998: 120–31Google Scholar
  167. 167.
    May, D. G. Genetic differences in drug disposition. J. Clin. Pharmacol. 1994; 34: 881–97PubMedCrossRefGoogle Scholar
  168. 168.
    Shimada, T., Yamazaki, H., Mimura, M., et al. Interindividual variation in human liver cytochrome P450 enzymes involved in oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians, J. Pharmacol. Exp. Ther. 1994; 270: 414–23PubMedGoogle Scholar
  169. 169.
    Spielberg, S. Pharmacogenetics: from scientific curiosity to a central theme in drug development and therapeutics. Can. J. Pharmacol. 1995; 2: 54–6Google Scholar
  170. 170.
    Gonzalez, F. J., Skoda, R. C., Dimura, S. et al. Characterization of the common genetic defects in humans deficient in debisquin metabolism. Nature 1988; 331: 442–6PubMedCrossRefGoogle Scholar
  171. 171.
    Lennard, L., Lilleyman, J. S., Van-Loon, J. and Weinshilboum, R. M. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukemia. Lancet 1990; 336: 225–29PubMedCrossRefGoogle Scholar
  172. 172.
    Krynetski, E., Tai, H. L. and Yates, C. R. Genetic polymorphism of thiopurina S-methyltransferase: Clincal importance and molecular mechanisms. Pharmacogenetics 1996; 6: 279–90PubMedCrossRefGoogle Scholar
  173. 173.
    Meyers, U. A. Pharmacogenetics: the slow, the rapid and ultrarapid. Proc. Natl. Acad. Sci. USA 1994; 91: 1983–4CrossRefGoogle Scholar
  174. 174.
    Nebert, D. W., McKinnon, R. A. and Puga, A. Human drug-metabolizing enzyme polymorphism: effects on risk of toxicity and cancer. DNA Cell Biol. 1996; 15: 273–80PubMedCrossRefGoogle Scholar
  175. 175.
    Eaton, D. L., Gallagher, E. P., Bammler, T. K. and Kunze, K. L. Role of cytochrome P4501A2 in chemical carcinogenesis: implication for human variability in expression and enzyme activity. Pharmacogenetics 1995; 5: 259–74PubMedCrossRefGoogle Scholar
  176. 176.
    Kawajiri, K., Nakachi, K. Imai, K. et al. Identification of genetically high risk individuals to lung cancer by DNA polymorphism on cytochrome P4501A1 gene. Letter, FEBS 1990; 263: 131–3CrossRefGoogle Scholar
  177. 177.
    Peterson, D. D., Mckinney, C. E., Ikeya, K. et al. Human CYP1A1 gene: cosegregation of the enzyme inducibility phenotype and an RFLP. Am J. Hum. Genet. 1991; 48: 720–25Google Scholar
  178. 178.
    Raunio, H., Husgafvel-Pursiainen, K., Antilla, S. et al. Diagnosis of polymorphism in carcinogen-activating and inactivating enzymes and cancer susceptibility–review. Gene 1995; 159: 113–21PubMedCrossRefGoogle Scholar
  179. 179.
    Flaws, J. A. and Bush, T. L. Racial differences in drug metabolism: an explanation for higher breast cancer mortality in blacks? Medical Hypoth. 1998; 50: 327–9CrossRefGoogle Scholar
  180. 180.
    Nebert, D. W. Polymorphism in drug-metabolizing enzymes: what is their clinical relevance and why do they exist ? Am. J. Hum. Genet. 1997; 60: 265–71PubMedCentralPubMedGoogle Scholar
  181. 181.
    Linder, M. W., Prough, R. A. and Valdes, R. Jr. Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clin. Chem. 1997; 43: 254–66PubMedGoogle Scholar
  182. 182.
    Kelsey, K. T., Ross, D., Traver, R. D. et al. Ethnic variation in the prevalence of a common NAD (P) H quinone oxidoreductase polymorphism and its implication for anticancer chemotherapy. Brit. J. Cancer 1997; 76: 852–4PubMedCentralPubMedCrossRefGoogle Scholar
  183. 183.
    Vermes, A., Guchelaar, H. J. and Koopmans, R. P. Individualization of cancer chemotherapy based on cytochrome P450 polymorphism: a pharmacogenetic approach. Cancer Treat. Rev. 1997; 23: 321–39Google Scholar
  184. 184.
    Gonzalez, F. J. and Idle, J. R. Pharmacogenetic phenotyping and genotyping. Present status and future potential. Clin. Pharmacokinet. 1994; 26: 56–70CrossRefGoogle Scholar
  185. 185.
    Seidegard, T., Voracheck, W. R., Pero, R. W. and Pearson, W. R. Hereditary differences in the expression of human glutathione transferase active on transstilbane oxide are due to gene deletion. Proc. Natl. Acad. Sci. USA 1988; 85: 7293–7PubMedCentralPubMedCrossRefGoogle Scholar
  186. 186.
    Beard, P. Genetic Polymorphism of Glutathione Transferase in Men. In: Pickett, C. B. and Mantle, T. J. (eds), GlutathioneTransferase and Drug Resistance (eds:) Taylor and Francis, 1990: 232–41Google Scholar
  187. 187.
    Norris, K. K., DeAngelo, T. M. and Vessell, S. E. G. Genetic and environmental factors that regulate cytosolic epoxide hydrolase acivity in human lymphocytes. J. Clin. Invest. 1989; 84: 1749–56PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2001

Authors and Affiliations

  • Mrinal K. Sanyal

There are no affiliations available

Personalised recommendations