Skip to main content

Metabolism of Chemotherapeutic Drugs by Maternal and Conceptus Tissues

  • Chapter
Cancer and Pregnancy
  • 134 Accesses

Abstract

Tumor cells are genetically transformed clones of cells.1–3 They divide vigorously under favorable conditions with doubling times ranging from several hours to years, invade host organs, attract blood vessels, secrete lysis materials and derive nutrients from the host. Tumors can be located in any body location, or metastasize by dispersal of cells to different areas, or may exist in the systemic blood circulation. The neoplastic tissue differentiation is pathological, capable of averting immune surveillance and acquiring mechanisms to destroy host tissues. Uncontrolled growth of cancer during pregnancy diverts resources from the mother and from the developing conceptus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ruddon, R. Cancer Biology, 3rd edn, Oxford University Press, Oxford, 1995

    Google Scholar 

  2. Franks, L. M. and Teich, N. M. Introduction to Cellular and Molecular Biology of Cancer. 3rd edn, Oxford University Press, Oxford, 1997

    Google Scholar 

  3. Verschraegen, C. F., Dhingra, K. and Jones, L. A. Biology of Gynecologic Cancer. In: Kavanaugh, J. J., Singletary, S. E., Eoinhorn, N. and DePetriello, A. D. (eds), Cancer in Women Blackwell Science, Oxford, 1998: 3–29

    Google Scholar 

  4. Chamberlain, G. and Pipkin, F. B. (eds) Clinical Physiology in Obstetrics, 3rd edn, Blackwell Science, Oxford, 1998

    Google Scholar 

  5. Bertino, J. R. Antineoplastic Drugs. In: Smith C. M. and Raynard, A. M. (eds), Text Book of Pharmacology, W. B. Saunders, Philadelphia, 1992: 941–63

    Google Scholar 

  6. Devita, V. T. Principles in Cancer Management. In: DeVita, V. T. Jr., Hellman, S. and Rosenberg, S. A. (eds), Cancer Principles and Practice of Oncology, 5th edn, Volume 1, Lippincott-Raven, Philadelphia, 1997: 333–47

    Google Scholar 

  7. Moore, M. J. and Goldenberg, G. J. Antineoplastic Drugs. In: Kalant, H. and Roschlau, W. H. E. (eds), Principles of Medical Pharmacology, 6th edn, Oxford University Press, New York, 1998: 759–74

    Google Scholar 

  8. Valley, A. W. and Balmer, C. M. Cancer Treatment and Chemotherapy. In: DiPiro, J. T., Talbert, R. L., Yee, G. C. et al. (eds), Pharmcotherapy–Pathological Approach, Appleton & Lang, Stamford, CT, 1999: 1957–2012

    Google Scholar 

  9. Stock, M. K. and Metcalf, J. Maternal Physiology during Gestation. In: Knobil, E. and Neill, J.D. (eds), The Physiology of Reproduction, 2nd edn, Volume 2, Raven Press, New York, 1994: 947–83

    Google Scholar 

  10. Duvekot, J. J. and Peeters, L. L. H. Very Early Changes in Cardiovascular Physiology. In: Chamberlain, G. and Pipkin, F. B. (eds), Clinical Physiology in Obstetrics, 3rd edn, Blackwell Science, Oxford, 1998: 3–32

    Google Scholar 

  11. Ogren, L. and Talamantes, F., Placenta as an Endocrine Organ: Polypeptides. In: Knobil, E. and Neill, J.D. (eds), The Physiology of Reproduction, 2nd edn, Volume 2, Raven Press, New York, 1994: 875–945

    Google Scholar 

  12. Chard, T. Placental Metabolism. In: Chamberlain, G. and Pipkin, F. B. (eds), Clinical Physiology in Obstetrics, 3rd edn, Blackwell Science, Oxford, 1998: 419–35

    Google Scholar 

  13. Manyonda, I. T. The Immune System. In: Chamberlain, G. and Pipkin, F. B. (eds), Clinical Physiology in Obstetrics, 3rd edn, Blackwell Science, Oxford, 1998: 129–162

    Google Scholar 

  14. Sanyal, M. K., Brami, C. J., Bischof, P. et al. Immunoregulatory activity in supernatant from cultures of normal trophoblast cells of the first trimester. Am. J. Obstet. Gynecol. 1989; 161: 446–453

    Article  CAS  PubMed  Google Scholar 

  15. Freedman, R. S., Kudelka, A. P., Verschraegan, C. F. and Platsoucas, C. D. Progress toward Tumor Specific Immunity in Carcinoma of the Ovary and Breast. In: Kavanaugh, J. J., Singletary, S. E., Eoinhorn, N. and DePetriello, A. D. (eds), Cancer in Women, Blackwell Science, 1998: 30–53

    Google Scholar 

  16. Evans, A. C. Jr. and Berchuck, A. Tumor Markers. In: Hoskins, W. J., Parez, C. A. and Young, R. C. (eds), Principles and Practice of Gynecologic Oncology, 2nd edn, Lippincott-Raven, Philadelphia, 1997: 177–95

    Google Scholar 

  17. Alessandro, R., Bicher, A. and Kohn, E. Tumor Invasion and Metastases. In: Hoskins, W. J., Parez, C. A. and Young, R. C. (eds), Principles and Practice of Gynecologic Oncology, 2nd edn, Lippincott-Raven, Philadelphia, 1997: 87–106

    Google Scholar 

  18. Williams, P. L. (ed.) Gray’s Anatomy, Volume 3. Embryology and Development. Churchill Livingstone, New York, 1995: 166–73

    Google Scholar 

  19. Benirscke, K. and Kaufman, P. Pathology of Human Placenta, 2nd edn, Springer-Verlag, New York, 1990

    Book  Google Scholar 

  20. Jones, C. J. P. and Fox, H. Ultrastructure of the normal human placenta. Electron. Microscop. Rev. 1991; 4: 120–78

    Google Scholar 

  21. Teasdale, F. Gestational changes in the functional structure of the human placenta in relation to fetal growth: a morphometric study. Am. J. Obstet. Gynec. 1980; 137: 560–8

    CAS  PubMed  Google Scholar 

  22. Teasdale, F. and Jean-Jacques, G. Morphometric evaluation of the microvillous surface enlargement factor in the human placenta from mid-gestation to term. Placenta. 1985; 6: 375–81

    Article  CAS  PubMed  Google Scholar 

  23. Van der Velde, W. J., Peereboom-Stegeman, J. H. J., Treffers P. E. and James, J. Basal lamina thickening in the placentae of smoking mothers. Placenta 1983; 6: 329–40

    Google Scholar 

  24. Cantle, S. J., Kaufman, P., Luckhadt, M. and Schweikart, G. Interpretation of syncytial sprout and bridges in the human placenta. Placenta 1987; 8: 221–34

    Article  CAS  PubMed  Google Scholar 

  25. Kaufman, P., Luckhardt, M., Schweikhart, G. and Cantle, S. J. Cross-sectional feature and three dimensional structure of human placental villi. Placenta 1987; 8: 235–47

    Article  Google Scholar 

  26. Morriss, F. H., Boyd, R. D. H. and Mahendran, D. Placental Transport. In: Knobil, E. and Neill, J.D. (eds), The Physiology of Reproduction, 2nd edn, Volume 2, Raven Press, New York, 1994: 813–861

    Google Scholar 

  27. Sibley, C. P. and Boyd, R. D. H. Mechanism of Transfer Across the Human Placenta. In: Polin, R. A. and Fox. H. (eds), Fetal and Maternal Physiology, W. B. Saunders, Philadelphia, 1992: 62–74

    Google Scholar 

  28. Mihaly, G. W. and Morgan, D. J. Placental drug transfer: effect of gestational age and species. Pharmacol. Therap. 1984; 23: 253–66

    Article  Google Scholar 

  29. Patten, B. M. Human Embryology, 3rd edn, McGraw-Hill, New York, 1968: 500–83

    Google Scholar 

  30. Heymann, M. A. Fetal Cardiovascular Physiology. In: Creasy, R. K. and Resnik, R. (eds) Maternal-Fetal Medicine, W. B. Saunders, Philadelphia, 1984: 276–87

    Google Scholar 

  31. Benet, L. Z., Koetz, D. L. and Sheiner, L. B. Pharmacokinetics. In: Hardman, J. G. and Limbird, L. E. (eds), Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 9th edn, McGraw-Hill, New York, 1996: 3–27

    Google Scholar 

  32. Ross, E. M. Pharmacodynamics. In: Hardman, J. G. and Limbird, L. E. (eds), Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 9th edn, McGraw-Hill, New York, 1996: 29–41

    Google Scholar 

  33. Ratain, M. J. Pharmacokinetics and Pharmacodynamics. In: DeVita, V. T. Jr., Hellman, S. and Rosenberg, S. A. (eds) Cancer Principles and Practice of Oncology, 5th edn, Lippincott-Raven, Philadelphia, 1997; 375–85

    Google Scholar 

  34. Reynolds, F. Pharmacokinetics. In: Chamberlain, G. and Pipkin, F. B. (eds), Clinical Physiology in Obstetrics, 3rd edn, Blackwell Science, Oxford, 1998: 239–260

    Google Scholar 

  35. Riddick, D. S. Drug Biotranformation. In: Kalant, H. and Roschlau, W. H. E. (eds) Principles of Medical Pharmacology, 6th edn, Oxford University Press, New York, 1998: 38–54

    Google Scholar 

  36. Wong, L. L. Cytochrome P450 monoxygenases. Curr. Opinion in Chem. Biol. 1998; 2: 263–8

    Article  CAS  Google Scholar 

  37. Hinson, J. A. and Forkert, P. G. Phase II enzymes and bioactivation. Can. J. Physiol. Pharmacol. 1995; 73: 1407–13

    CAS  PubMed  Google Scholar 

  38. Nebert, D. W., Nelson, D. R., Adesnik, M. et al. The P450 gene superfamily. Update on the naming of new genes and nomenclature of chromosomal loci. DNA 1989; 8: 1–13

    Article  CAS  PubMed  Google Scholar 

  39. Nelson, D. R., Kamataki, T., Waxman, D. J. et. al. The P450 superfamily: update on new sequence, gene mapping, accession numbers, early trivial names of enzymes and nomenclature. DNA Cell Biol. 1993; 12: 1–51

    Article  CAS  PubMed  Google Scholar 

  40. Black, S. D. Cytochrome P450 Structure and Function. In: Schenkman, J. B. and Greim, H. (eds), Handbook of Experimental Pharmacology, Springer, Berlin, 1993: 155–68

    Google Scholar 

  41. Shimada, T., Mimura, M., Inoue, K. et al. Cytochrome P450 dependent drug oxidation activities in liver microsomes of various animal species including rats, guinea pigs, dogs, monkeys and humans. Arch. Toxicol. 1997; 71: 401–8

    Article  CAS  PubMed  Google Scholar 

  42. Kivisto, K. T., Kroemer, H. K. and Eichelbaum, H. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications in drug interactions. Br. J. Clin. Pharmacol. 1995; 40: 523–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Guengerich, F. P. Role of cytochrome P450 enzymes in drug-drug interactions. Adv. Pharmacol. 1997; 43: 7–35

    Article  CAS  PubMed  Google Scholar 

  44. Clarke, L. and Waxman, D. J. Oxidative metabolism of cyclophosphamide: identification of hepatic monoxygenase catalysis of drug activation. Cancer Res. 1989; 49: 2344–50

    CAS  PubMed  Google Scholar 

  45. Chang, T. K., Weber, G. F., Crespi, C. L. and Waxman, D. J. Differential activation of cyclophosphamide and ifosfamide by cytochrome P450 2B and 3A in human liver microsomes. Cancer Res. 1993; 53: 5629–37

    CAS  PubMed  Google Scholar 

  46. Bohnenstengel, F., Hofmann, U., Eichelbaum, M. and Kroemer, H. K. Characterization of the cytochrome P450 involved in side chain oxidation of cyclophosphamide in humans. Eur. J. Clin. Pharmacol. 1996; 51: 297–301

    Article  CAS  PubMed  Google Scholar 

  47. Chang, T. K., Yu, L., Goldstein, J. A. and Waxman, D. J. Identification of polymorphically expressed CYP 2C19 and the wild type CYP269–ILE359 allele as low Km catalysis of cyclophosphamide and ifosfamide activation. Pharmacogenetics 1997; 7: 211–21

    Article  CAS  PubMed  Google Scholar 

  48. Ren, S., Yang, J. S., Kalhorn, T. F. and Slattery, J. T. Oxidation of cyclophosphamide to 4hydroxycyclophosphamide and deschlooethylcyclophosphamide in human liver microsomes. Cancer Res. 1997; 57: 4229–35

    CAS  PubMed  Google Scholar 

  49. Hengstker, J. G., Hengst, A., Fuchs, A. et al. Induction of crosslinking and DNA strand lesion by cyclophosphamide after activation by cytochrome P450 2B1. Mut. Res. 1997; 373: 215–23

    Article  Google Scholar 

  50. Pariani, S., Buscaglia, M., Piantanide, M., and Simoni, G. Cyclophosphamide increases frequency of sister chromatid exchanges in direct preparations of human chorionic villi in the absence of supplementary enzymatic activation systems. J. Med. Genetics 1992; 29: 109–11

    Article  CAS  Google Scholar 

  51. Cuisido, L., Pujol, R. Egocue, J. and Garcia, M. Cyclophosphamide-induced synaptonemal complex damage during meiotic prophase of female Rattus norvgicus. Mut. Res. 1995; 329: 131–41

    Google Scholar 

  52. Cutts, S. M., Persons, P.G., Saturn,R. A. and Phillips, D. R. Adriamycin-induced DNA adducts inhibits the DNA interaction of transcription factors and RNA polymerase. J. Biol. Chem. 1996; 271: 5422–9

    CAS  Google Scholar 

  53. Boyer, M. J. Bioreductive agents: a clinical update. Oncology Res. 1997; 9: 391–5

    CAS  Google Scholar 

  54. Tomaz, M. and Palom, Y. The mitomycin bioreductive antitumor agents: crossl-inking and alkylation of DNA as the molecular basis of their activity. Pharmacol. Ther. 1997; 76: 73–87

    Article  Google Scholar 

  55. Masters, J. R., Know, R. J., Hartley, J. A., et al. KW-2149 (7-N-[2-[gamma-L-gluta-amyl amino] ethyl dithioethyl] mitomycin C) a new mitomycin C analogue activated by serum. Biochem. Pharmacol. 1997; 53: 279–85

    Article  CAS  PubMed  Google Scholar 

  56. Haffty, B. G., Son, Y. H., Papac, R. et al. Chemotherapy as an adjunct to radiation in the treatment of squamous cell carcinoma of the head and neck: results of Yale mitomycin randomized trial. J. Clin. Oncol. 1997; 15: 268–76

    CAS  PubMed  Google Scholar 

  57. Raymond, E., Favivre, S., Woynarowski, J. M. and Chaney, G. G. Oxiplatin: mechanism of action and antineoplastic activity. Semin.Oncol. 1998; 25: (2 suppl. 5): 4–12

    CAS  PubMed  Google Scholar 

  58. Nagani, N., Okuda, R. Kinoshita, M. and Ogata, H. Decomposition kinetics of cisplatin in human biological fluids. J. Pharmacy Pharmacol. 1994; 48: 918–24

    Article  Google Scholar 

  59. Saris, C. P., Van der Vaart, P. J., Rietbroek, R. C. and Blommaerrt, F. A. In vitro formation of DNA adducts by cisplatin, loboplatin, and oxoplatin in calf thymus DNA in solution and in cultured human cells. Carcinogenesis 1996; 17: 2763–9

    Article  CAS  PubMed  Google Scholar 

  60. Mani, C., Gelboin, H. V., Park, S. S. et al. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P 450 catalysed N-demethylation and 4-hydroxylation. Drug Metab. Dispos. 1993; 21: 645–56

    CAS  Google Scholar 

  61. Jordan, V. C. Tamoxifen: Toxicities and drug resistance during the treatment and prevention of breast cancer. Ann. Rev. Pharmacol. Toxicol. 1995; 35: 195–211

    Article  CAS  Google Scholar 

  62. Crewe, H. K., Ellis, S. W., Lennard, M. S. and Tucker, G. T. Variable contribution of cytochrome P 450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem. Pharmacol. 1997; 53: 171–8

    Article  CAS  PubMed  Google Scholar 

  63. Dorr, R. T. Pharmacology of Taxanes. Pharmacotherapy. 1997; 17 (5 pt 2): S96–104

    Google Scholar 

  64. Harris, J. W., Rahman, A., Kim, B. et al. Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzymes. Cancer Res. 1994; 54: 4026–35

    CAS  PubMed  Google Scholar 

  65. Walle, T. Assays of CYP2C8 and CYP3A4 mediated metabolism of taxol in vivo and vitro. Methods in Enzymology 1996; 272: 145–51

    Article  CAS  PubMed  Google Scholar 

  66. Kumar, G. N., Oatis, J. E. Jr., Thornberg, K. R. et al. 6-alpha-hydroxytaxol: isolation and identification of the major metabolite of taxol by human liver microsomes. Drug Metab. Dispos. 1994; 22: 177–9

    CAS  Google Scholar 

  67. Kumar, G. N., Walle, U. K. and Walle, T. Cytochrome P450 3A-mediated human liver microsomal taxol 6 alpha-hydroxylation. J. Pharmacol. Exp. Ther. 1994; 268: 1160–65

    CAS  PubMed  Google Scholar 

  68. Royer, I., Monsarrat, B., Sonnier, M., et al. Metabolism of docetaxel by human cytochrome P450: interactions with paclitaxel and other neoplastic drugs. Cancer Res. 1996; 56: 58–65

    CAS  PubMed  Google Scholar 

  69. Gidding, C. E., Kellie, S. J., Kamps, W. A. and Graff, S. S. Vincristine revisited. Crit. Rev. Oncol. 1999; 29: 267–87

    Article  CAS  Google Scholar 

  70. Zhou-Pan, X., R., Serree, E., Zhou, X. J. et al. Involvement of human liver cytochrome P4503A in vinblastin metabolism: drug interactions. Cancer Res. 1993; 53: 5121–6

    CAS  PubMed  Google Scholar 

  71. Lobert, S., Vulevic, B. and Correica, J. J. Interaction of vinca alkaloids with tubulin: a comparison of vinblastin, vincristin and vinorelbine. Biochemistry 1996; 35: 6808–14

    Article  Google Scholar 

  72. Panda, D., Miller, H. P., Islam, K. and Wilson, L. Stabilization of microtubule dynamics by estramustine by binding to a novel site in tubulin: a possible mechanistic basis for its antitumor action. Proc. Natl. Acad. Sci. USA 1997; 94: 10560–4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Hagen, B., Walseth, P., Walstad, P. et. al. Single and repeated dose pharmacokinetics of thio-TEPA in patients treated for ovarian cancinoma. Cancer Chemotherap. Phamocol. 1987; 19: 143–8

    CAS  Google Scholar 

  74. Ng, S. and Waxman, D. J. Activation of thio-TEPA cytotoxicity toward human breast cancer cells by hepatic cytochrome P450. Int. J. Oncol. 1993; 2: 731–8

    CAS  PubMed  Google Scholar 

  75. Chang, T. K. H., Chen, G. and Waxman, D. J. Modulation of thiotepa antitumor activity in vivo by alteration of liver cytochrome P450 catalyzed drug metabolism. J. Pharmacol. Exp. Therap. 1995; 274: 270–5

    CAS  Google Scholar 

  76. Raha, A. and Tew, K. D. Glutathione S-transferase. Cancer Treat. and Res. 1996; 87: 83–122

    Article  CAS  Google Scholar 

  77. Ferrandina, G., Scambia, G., Damia, G. et al. Glutathione S-transferase activity in epithelial ovarian cancer: association with response to chemotherapy and disease outcome. Ann. Oncol. 1997; 8: 34350

    Article  Google Scholar 

  78. Tanner, B., Hengstler, J. G. Dietrich, B. et al. Glutathione, glutathione S-transferase alpha and pi, and aldehyde dehydrogenase content in relationship to drug resistance in ovarian cancer. Gynec. Oncol. 1997; 65: 54–62

    Article  CAS  Google Scholar 

  79. Renes, J., deVries, E. G., Nienhuis, E. F et al. ATP and glutathione-dependent transport of chemotherapeutic drugs by multidrug resistant protein MRPI. Br. J. Pharmacol. 1999; 126: 681–8

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Aran, J. M., Pastan, I. and Gottesman, M. M. Therapeutic strategies involving the multidrug resistance phenotype: the MDR1 gene as target, chemoprotectant, and selectable marker in gene therapy. Adv. Phamacol. 1999; 46: 1–42

    CAS  Google Scholar 

  81. Deeley, R. G. and Cole, S. P. C. Function, evolution and structure of multidrug resistance protein (MRP). Semin. Cancer Biol. 1997; 8: 193–204

    Article  CAS  PubMed  Google Scholar 

  82. Sancar, A. DNA excision repair. Ann. Rev. Biochem. 1996; 65: 43–81

    Article  CAS  PubMed  Google Scholar 

  83. Crul, M., Schellans, J. H. M, Beijnen, J. H.and Maliepaard, M. Cisplatin resistance and DNA repair. Cancer Treat. Reviews 1997; 23: 341–66

    Article  CAS  Google Scholar 

  84. Filler, R. and Lew, K. J. Developmental onset of mixed function oxidase activity in preimplantation mouse embryos. Proc. Natl. Acad. Sci. USA 1981; 78: 6991–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Pedersen, R. A., Meneses, J., Spindle, A. et al. Cyotchrome P450 metabolic acivity in embryonic and extraembryonic tissue lineage of mouse embryos. Proc. Natl. Acad. Sci. USA 1985; 82: 3311–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Dey, A., Westphal, H. and Nebert, D. W. Cell specific induction of mouse cyplal mRNA during development. Proc. Natl. Acad. Sci. USA 1989; 86: 7446–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Berry, D. L., Zachariah, P. K., Namkung, M. J. and Juchau, M. R. Transplacenal induction of carcinogen by hydroxylation system with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol. Appl. Pharmacol. 1976; 36: 569–84

    Article  CAS  PubMed  Google Scholar 

  88. Wu, D. and Cederbaum, A. I. Expression of P4502E1 in rat fetal hepatocyte culture. Mol. Pharmacol. 1996; 49: 802–807

    CAS  PubMed  Google Scholar 

  89. Borlakoglu, J. T., Scott, A., Henderson, C. J. and Wolf, C. R. Expression of P450 isoenzymes during rat liver organogenesis. Int. J. Biochem. 1993; 25: 1659–68

    CAS  PubMed  Google Scholar 

  90. Juchau, M. R., Harris, C., Stark, K. L. et al. Cytochrome P450-dependent bioactivation of prodysmorphogens in cultured conceptuses. Reprod. Toxicol. 1991; 5: 259–64

    Article  CAS  PubMed  Google Scholar 

  91. Juchau, M. R., Lee, Q. P. and Fantel, A. G. Xenobiotic biotransformation/bioactivation in organogenesis-stage conceptal tissues: implication for embryotoxicity and teratogenesis. Drug Metab. Rev. 1992; 24: 195–234

    CAS  Google Scholar 

  92. Sanyal, M. K. and Naftolin, F. In vitro development of mammalian embryo. J. Exp. Zool. 1983; 228: 235–51

    Article  CAS  PubMed  Google Scholar 

  93. Sanyal, M. K., Kitchin, K. T. and Dixon, R. L. Rat conceptus development in vitro: Comparative effects of alkylating agents. Toxicol. Appl. Pharmacol. 1981; 57: 14–19

    Article  CAS  PubMed  Google Scholar 

  94. Kitchin, K. T., Schmid, B. P. and Sanyal, M. K. Teratogenicity of cyclophosphamide in a coupled microsomal activating/embryo culture system. Biochem. Pharmacol. 1981; 30: 59–64

    Article  CAS  PubMed  Google Scholar 

  95. Schmid, B. P., Goulding, E., Kitchin, K. T. and Sanyal, M. K. Assessment of the teratogenic potential of acrolein and cyclophosphamide in a rat embryo culture system. Toxicology 1981; 22: 235–4

    Article  CAS  PubMed  Google Scholar 

  96. Satish, J., Pratt, B. M., and Sanyal, M. K. Differential dysmorphogenesis induced by microinjection of an alkylating agent into rat conceptuses cultured in vitro. Teratology 1985; 31: 61–72

    Article  CAS  PubMed  Google Scholar 

  97. Biggers, W. J., Barnea, E. T. and Sanyal, M. K. Anomalous neural differentiation induced by 5bromo-2deoxy-uridine during organogenesis in the rat. Teratology 1987; 35: 63–75

    Article  CAS  PubMed  Google Scholar 

  98. Lee, Q. P., Fantel, A. G. and Juchau, M. R. Human embryonic cytochrome P450s: phenoxazone ethers as probes for expression of functional isoforms during organogenesis. Biochem. Pharmacol. 1991; 42: 2377–86

    Article  CAS  PubMed  Google Scholar 

  99. Juchau, M. R. and Yang, H. L. Cytochrome P450-dependent monooxygenase of embryonic/teratogenic chemicals in human embryonic tissues. Fundment. Appl. Toxicol. 1996; 34: 166–8

    Google Scholar 

  100. Naftolin, F., Diamond, M. P., Pinter, E., Reece, A. and Sanyal, M. K. A hypothesis concerning the general basis of organogenetic congenital anomalies. Am J. Obstet. Gynecol. 1987; 157: 1–4

    Article  CAS  PubMed  Google Scholar 

  101. Juchau, M. R. Chemical teratogenesis in humans: biochemical and molecular mechanisms. Prog. Drug Res. 1997; 49: 25–92

    CAS  PubMed  Google Scholar 

  102. Juchau, M. R., Boutelet-Bochan, H. and Huang, Y. Cytochrome P450 dependent biotransformation of xenobiotics in human and rodent embryonic tissues. Drug Metab. Rev. 1998; 30: 541–68

    CAS  Google Scholar 

  103. Wells, P. G. Chemical Teratogenesis. In: Kalant, H. and Roschlau, W. H. E. (eds), Principles of Medical Pharmacology, 6th edn, Oxford University Press, New York, 1998: 873–90

    Google Scholar 

  104. Hakkola, J., Pelkonen, O., Pasanen, M. and Raunio, H. Xenobiotic-metabolizing cytochrome P450 enzymes in human feto-placental unit: role in intrauterine toxicity. Crit. Rev.Toxicol. 1998; 28: 3572

    Google Scholar 

  105. Yaffe, S. J., Rane, A., Sjoqvist, F. et al. The presence of monooxygenase system in human fetal liver microsomes. Life Sci. 1970; 9: 1189–200

    Article  CAS  Google Scholar 

  106. Farrar, H. C. and Blumer, J. L. Fetal effects of maternal drug exposure. Ann. Rev. Pharmacol. Toxicol. 1991; 31: 525–47

    Article  CAS  Google Scholar 

  107. Krauer, B. and Dayer, P. Fetal drug metabolism and its possible clinical implication. Clin. Pharmacokinet. 1991; 21: 70–80

    Article  CAS  PubMed  Google Scholar 

  108. Kitada, M. and Kamataki, T. C. Cytochrome P450 in human fetal liver: significance and fetal specific expression. Drug Metab. Rev. 1994; 26: 305–23

    CAS  Google Scholar 

  109. Raucy, J. L. and Carpenter, S. J. The expression of xenobiotic metabolizing cytochrome P450 in fetal tissues. J. Pharmacol. Toxicol. Methods 1993; 29: 121–8

    Article  CAS  PubMed  Google Scholar 

  110. Jones, A. H., Fantel, A. G., Kocan, R. M. and Juchau, M. R. Bioactivation of procarcinogens to muta-gens in human fetal and placental tissues. Life Sci. 1997; 21: 1831–7

    Article  Google Scholar 

  111. Hakkola, J., Pasanen, M. Purkunen, R. et al. Expression of xenobiotic-metabolizing cytochrome P450 forms in human adult and fetal liver. Biochem. Pharmacol. 1994; 48: 59–64

    Article  CAS  PubMed  Google Scholar 

  112. Murray, G. I., Foster, C. O., Barnes, T. S. et al. Cytochrome P450 lA expression in adult and fetal human liver. Carcinogenesis 1992; 13: 165–9

    Article  CAS  PubMed  Google Scholar 

  113. McKinnon, R. A., Burgess, W. M., Gonzales, F. J. et al. Species specific expression of CYP4B1 in rabbit and human gastrointestinal tissues. Pharmacogenetics 1994; 4: 260–70

    Article  CAS  PubMed  Google Scholar 

  114. Shimada, T., Yamazaki, H., Mimura, M., et al. Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal livers and adult lungs. Drug Metab. Dispos. 1996; 24: 515–22

    CAS  Google Scholar 

  115. Guengerich, F. P., Shimada, T., Yamazaki, H. and Mimura, M. Comparison of cytochrome P450 enzymes and their activities in human fetal and adult liver. Fund. Appl. Toxicol. 1996; 34: 168–72

    Google Scholar 

  116. Yang, H. L., Namkung, M. J. and Juchau, M. R. Expression of functional cytochrome P4501A1 in human embryonic hepatic tissues during organognesis. Biochem. Pharmacol. 1995; 49: 717–26

    Article  CAS  PubMed  Google Scholar 

  117. Treluyer, J. M., Jacqz-Aigrain, E., Alvarez, F. and Cresteil, T. Expression of CYP 2D6 in developing human liver. Eur. J Biochem. 1991; 202: 583–8

    Article  CAS  PubMed  Google Scholar 

  118. Gilham, D. E., Cairns, W., Paine, M. J. I. et al. Metabolism of MTPT by cytochrome P450 2D6 and demonstration of 2D6 mRNA in human fetal and adult brain by in situ hybridization. Xenobiotica 1997; 27: 111–25

    Article  CAS  PubMed  Google Scholar 

  119. Carpenter, S. P., Lasker, J. M. and Raucy, J. L. Expression, induction and catalytic activity of the ethanol induced cytochrome P450 (CYP 2E1) in human fetal liver. Molec. Pharmacol. 1996; 49: 260–8

    CAS  Google Scholar 

  120. Jones, S. M., Boobis, A. R., Moore, G. E. and Stanier, P. M. Expression of CYP2E1 during human fetal development: methylation of the CYP2E1 gene in human fetal and adult liver samples. Biochem. Pharmacol. 1992; 43: 1876–80

    Article  CAS  PubMed  Google Scholar 

  121. Boutelet-Bochan, H., Huang, Y. and Juchau, M. R. Expression of CYP 2E1 during embryogenesis and fetogenesis in human cephalic tissues: implication for the fetal alcohol syndrome. Biochem. Biophysis. Res. Commun. 1997; 238: 443–7

    Article  CAS  Google Scholar 

  122. Vieira, I., Sonnier, M. and Cresteil, T. Developmental expression of CYP 2E1 in the human liver. Hypermethylation control of gene expression during the neonatal period. Eur. J. Biochem. 1996; 238: 476–83

    Article  CAS  PubMed  Google Scholar 

  123. Yang, H. L., Lee, Q. P., Rettie, A. E. and Juchau, M. R. Functional CYP3A isoform in human embryonic tissues: expression during organogenesis. Molec. Phamacol. 1994; 46: 922–9

    CAS  Google Scholar 

  124. Schuetz, J. D., Beach, D. L. and Guzelian, P. S. Selective expression of cytochrome P4503A mRNAs in embryonic and adult human liver. Pharmacogenetics 1994; 4: 11–20

    Article  CAS  PubMed  Google Scholar 

  125. Greuet, J., Pichard, L., Bonfils, C. et al. The fetal specific gene CYP 3A7 is inducible by rifampcin in adult human hepatocytes in primary culture. Biochem. Biophys. Res. Commun. 1996; 225: 689–94

    Article  CAS  PubMed  Google Scholar 

  126. Schuetz, J. D., Schuetz, E. G., Thottassery, J. V. et al. Identification of novel dexamethasone responsive enhancer in the CYP 3A5 gene and its activation in human and rat liver cells. Mol. Pharmacol. 1996; 49: 63–72

    CAS  PubMed  Google Scholar 

  127. LaCroix, D., Sonnier, M., Moncion, A., Cheron, G. and Cresteil, T. Expression of CYP 3A in the human liver. Evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur. J. Biochem. 1997; 247: 625–34

    Article  CAS  PubMed  Google Scholar 

  128. Juchau, M. R. Drug biotransformation in the placenta. Pharmacol. Ther. 1980; 8: 501–24

    Article  CAS  PubMed  Google Scholar 

  129. Pasanen, M. and Pelkonen, O. Human placental xenobiotic and steroid biotransformations catalyzed by cytochrome P450, epoxide hydrolase and glutathione S-transferase activities and their relationships to maternal cigarette smoking. Drug Metab. Rev. 1989; 21: 427–61

    Google Scholar 

  130. Pasanen, M. and Pelkonen, O. The expression and environmental regulation of P450 enzymes in human placenta. Crit. Rev. Toxicol. 1994; 24: 211–29

    Article  CAS  PubMed  Google Scholar 

  131. Juchau, M. R. Human placental hydroxylation of 3,4-benzo(a)pyrene during early gestation and at term. Toxicol. Appl. Pharmacol. 1971; 18: 665–75

    Article  CAS  PubMed  Google Scholar 

  132. Juchau, M. R. and Smuckler, E. A. Subcellular localization of human placental aryl hydrocarbon hydroxylase. Toxicol. Appl. Pharmacol. 1973; 26: 163–79

    Article  CAS  PubMed  Google Scholar 

  133. Manchester, D. K. and Jacoby, E. H. Sensitivity of human placental monooxygenase activity to maternal smoking. Clin. Pharmacol. Ther. 1081; 30: 687–92

    Article  Google Scholar 

  134. Manchester, D. K. and Jacoby, E. H. Decreased placental monooxygenase activities associated with birth defects. Teratology 1984; 30: 31–3

    Article  CAS  PubMed  Google Scholar 

  135. Gurtoo, H. L., Williams, C. J., Gottlieb, K. et al. Population distribution of placental benz(a)pyrene metabolism in smokers. Int. J. Cancer 1983; 31: 29–37

    Article  CAS  PubMed  Google Scholar 

  136. Fujino, T., Gottlieb, K, Manchester, D. K. et al. Monoclonal antibody phenotyping of interindividual differences in cytochrome P450-dependent reactions of single and twin placenta. Cancer Res. 1984; 44: 3916–23

    CAS  PubMed  Google Scholar 

  137. Huel, G., Girard, F., Nessmann, C. et al. Placental aryl hydrocarbon hydroxylase activity and placental calcification. Toxicology 1992; 71: 257–66

    Article  CAS  PubMed  Google Scholar 

  138. Pasanen, M., Haaparanta, T., Sundin, M. et al. Immunochemical and molecular biological studies on human placental cigarette smoke inducible cytochrome P450 dependent monooxygenase activities. Toxicology 1990; 62: 175–87

    Article  CAS  PubMed  Google Scholar 

  139. Hakkola, J., Raunio, H., Purkunen, R. et al. Detection of cytochrome P450 gene expression in human placenta in first trimester pregnancy. Biochem. Pharmacol. 1996; 52: 379–83

    Article  CAS  PubMed  Google Scholar 

  140. Hakkola, J., Pasanen, M., Hukkanen, J. et al. Expression of xenobiotic-metabolizing cytochrome P450 forms in human full term placenta. Biochem. Pharmacol. 1996; 51: 403–11

    Article  CAS  PubMed  Google Scholar 

  141. Hakkola, J., Pasanen, M., Pelkonen, O., et al. Expression of CYP1B1 in human adult and fetal tissues and differential ineducability of CYP 1 B 1 and CYP1A1 by Ah receptor ligands in human placenta and cultured cells. Carcinogenesis 1997; 18: 391–7

    Article  CAS  PubMed  Google Scholar 

  142. Sanyal, M. K., Li, Y. L., Biggers, W. J., Satish, J. and Barnea, E. R. Augmentation of polynuclear aromatic hydrocarbon metabolite of human first trimester pregnancy by cigarette smoke exposure. Am. J. Obstet. Gynecol. 1993; 168: 1587–97

    Article  CAS  PubMed  Google Scholar 

  143. Sanyal, M. K., Li, Y. L. and Belanger, K. Metabolism of polynuclear aromatic hydrocarbon in human term placenta influenced by cigarette smoke exposure. Reprod. Toxicol. 1994; 8: 411–18

    Article  CAS  PubMed  Google Scholar 

  144. Sanyal, M. K. and Barnea, E. R. Expression of aryl hydrocarbon hydroxylase (CYP1A1) in human placentas. In: Barnea, E. R. Check, J. H., et al. (eds), Implantation and Early Pregnancy, Parthenon Publishing Group, London, 1994: 379–86

    Google Scholar 

  145. Howie, A. F., Hayes, J. D. and Beckett, G. J. Purification of acidic glutathion S-transferase from human lungs, placenta and erthythrocyte and development of specific radioimmunoassay for their measurement. Clin. Chem. Acta. 1988; 177: 65–75

    Article  CAS  Google Scholar 

  146. Aiso, S., Yasuda, K., Shiozawa, M., et al. Preparation of monoclonal antibodies to glutathione Stransferase pi application to immunohistochemical study. J. Histochem. Cytochem. 1989; 37: 1247–52

    Article  CAS  PubMed  Google Scholar 

  147. Manchester, D. K. and Jacoby, E. H. Glutathione S-transferase activities in placentas from smoking and nonsmoking women. Xenobiotica 1982; 12: 543–47

    Article  CAS  PubMed  Google Scholar 

  148. Pasanen, M and Pelkonen, O. Xenobiotic and steroid metabolizing monoxygenase catalysed by cytochrome P450 and glutathione S-transferase conjugations in the human placenta and their relationship to maternal cigarette smoking. Placenta 1990; 11: 75–85

    Article  CAS  PubMed  Google Scholar 

  149. Wixtrom, R. N., Silva, M. H. and Hammock, B. D. Cytosolic epoxide hydrolase in human placenta. Placenta 1988; 9: 559–63

    Article  CAS  PubMed  Google Scholar 

  150. Farin, F. M., Pohlman, T. H. and Omiecinski, C. J. Expression of cytochrome P450s and microsomal epoxide hydrolase in primary cultures of human umblical vein endothelial cells. Toxicol. Appl. Pharmacol. 1994; 124: 1–9

    Article  CAS  PubMed  Google Scholar 

  151. Manchester, D. K., Gordon, S. K., Golas, C. L. et al. Ah receptor in human placenta: solubilization by molybdate and characterization by binding of 2,3,7,8- tetrachlorobenzo-p-dioxin, 3methylcholanthrene and benzo(a)pyrene. Cancer Res. 1987; 47: 4861–8

    CAS  PubMed  Google Scholar 

  152. Sogowa, K., Nakano, R., Kobayashi, A. et al. Possible function of Ah receptor nuclear translocator (Amt) homodimer in transcriptional regulation. Proc. Natl. Acad. Sci. USA 1995; 92: 1936–40

    Article  Google Scholar 

  153. Sotto, F., Seree, E., Khyari, S. E., et al. Tissue-specific expression and methylation of the human CYP2E1 gene. Biochem. Pharmacol. 1994; 48: 1095–103

    Article  Google Scholar 

  154. Rasheed, A., Hines, R. N. and McCarver-May, D. G. Variation in induction of placental ’CYP2E1: possible role is susceptibility to fetal alcohol syndrome. Toxicol. Appl. Pharmacol. 1997; 144: 396–400

    Article  CAS  PubMed  Google Scholar 

  155. Schuetz, J. D., Kauma, S. and Guzelian, P. S. Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta. J. Clin. Invest. 1993; 92: 1018–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Cummingham, F. G., McDonald, P. C., Gant, N. et al. (eds) Williams Obstetrics, 20th edn, Appleton & Lange, Stamford, CT, 1997: 125–190

    Google Scholar 

  157. Ryan, K. J. Biological aromatization of steroids. J. Biol. Chem. 1959; 234: 268–72

    CAS  PubMed  Google Scholar 

  158. Diczfalusy, E. and Toren, P. Endocrine functions of human placenta. Vit. Horm. 1961; 19: 229–311

    Article  CAS  Google Scholar 

  159. Siiteri, P. K. and MacDonald, P. C. Placental estrogen biosynthesis during human pregnancy. J. Clin. Endocrinol. 1966; 26: 751–61

    Article  CAS  Google Scholar 

  160. Baulieu, E. E.and Dray, F. Conversion of ’H-dehydroepiandrosterone (3ß-hydroxysteroid A’androstene-17-one) sulfate to ’H-estrogens in normal pregnant women. J. Clin. Endocrinol. 1963; 23: 1298–301

    Article  CAS  Google Scholar 

  161. Canick, J. A. and Ryan, K. J. Cytochrome P450 and aromatization of 16-hydroxytestosterone and androstenedione by human placental microsomes. Mol. Cell. Endocrinol. 1976; 6: 105–15

    Article  CAS  PubMed  Google Scholar 

  162. Mason, J. I. and Rainey, W. E. Steroidogenesis in the human fetal adrenal: a role for cholesterol synthesized de novo. J. Clin. Endocrinol. Metab. 1987; 64: 140–7

    Article  CAS  PubMed  Google Scholar 

  163. Simpson, E. R., Mahendroo, M. S., Means, G. D. et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocrn. Rev. 1994; 15: 342–55

    CAS  Google Scholar 

  164. Means, G. D., Kilgore, M. W., Mahendroo, M. S. et al. Tissue specific promoters regulate aromatase cytochrome P450 gene expression in human ovary and fetal tissues. Mol. Endocrinol. 1991; 5: 2005–13

    Article  CAS  PubMed  Google Scholar 

  165. Kilgore, M. W., Means, G. D., Mendelson, C. R. and Simpson, E. R. Alternate promotion of aromatase P-450 expression in the human placenta. Mol. Cell Endocrinol. 1992; 83: R9–16

    Article  CAS  PubMed  Google Scholar 

  166. Kalow, W. and Grant, D. M. Human Pharmacogenetics. In: Kalant, H. and Roschlau, W. H. E. (eds), Principles of Medical Pharmacology, 6th edn, Oxford University Press, New York, 1998: 120–31

    Google Scholar 

  167. May, D. G. Genetic differences in drug disposition. J. Clin. Pharmacol. 1994; 34: 881–97

    Article  CAS  PubMed  Google Scholar 

  168. Shimada, T., Yamazaki, H., Mimura, M., et al. Interindividual variation in human liver cytochrome P450 enzymes involved in oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians, J. Pharmacol. Exp. Ther. 1994; 270: 414–23

    CAS  PubMed  Google Scholar 

  169. Spielberg, S. Pharmacogenetics: from scientific curiosity to a central theme in drug development and therapeutics. Can. J. Pharmacol. 1995; 2: 54–6

    Google Scholar 

  170. Gonzalez, F. J., Skoda, R. C., Dimura, S. et al. Characterization of the common genetic defects in humans deficient in debisquin metabolism. Nature 1988; 331: 442–6

    Article  CAS  PubMed  Google Scholar 

  171. Lennard, L., Lilleyman, J. S., Van-Loon, J. and Weinshilboum, R. M. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukemia. Lancet 1990; 336: 225–29

    Article  CAS  PubMed  Google Scholar 

  172. Krynetski, E., Tai, H. L. and Yates, C. R. Genetic polymorphism of thiopurina S-methyltransferase: Clincal importance and molecular mechanisms. Pharmacogenetics 1996; 6: 279–90

    Article  CAS  PubMed  Google Scholar 

  173. Meyers, U. A. Pharmacogenetics: the slow, the rapid and ultrarapid. Proc. Natl. Acad. Sci. USA 1994; 91: 1983–4

    Article  Google Scholar 

  174. Nebert, D. W., McKinnon, R. A. and Puga, A. Human drug-metabolizing enzyme polymorphism: effects on risk of toxicity and cancer. DNA Cell Biol. 1996; 15: 273–80

    Article  CAS  PubMed  Google Scholar 

  175. Eaton, D. L., Gallagher, E. P., Bammler, T. K. and Kunze, K. L. Role of cytochrome P4501A2 in chemical carcinogenesis: implication for human variability in expression and enzyme activity. Pharmacogenetics 1995; 5: 259–74

    Article  CAS  PubMed  Google Scholar 

  176. Kawajiri, K., Nakachi, K. Imai, K. et al. Identification of genetically high risk individuals to lung cancer by DNA polymorphism on cytochrome P4501A1 gene. Letter, FEBS 1990; 263: 131–3

    Article  CAS  Google Scholar 

  177. Peterson, D. D., Mckinney, C. E., Ikeya, K. et al. Human CYP1A1 gene: cosegregation of the enzyme inducibility phenotype and an RFLP. Am J. Hum. Genet. 1991; 48: 720–25

    Google Scholar 

  178. Raunio, H., Husgafvel-Pursiainen, K., Antilla, S. et al. Diagnosis of polymorphism in carcinogen-activating and inactivating enzymes and cancer susceptibility–review. Gene 1995; 159: 113–21

    Article  CAS  PubMed  Google Scholar 

  179. Flaws, J. A. and Bush, T. L. Racial differences in drug metabolism: an explanation for higher breast cancer mortality in blacks? Medical Hypoth. 1998; 50: 327–9

    Article  CAS  Google Scholar 

  180. Nebert, D. W. Polymorphism in drug-metabolizing enzymes: what is their clinical relevance and why do they exist ? Am. J. Hum. Genet. 1997; 60: 265–71

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Linder, M. W., Prough, R. A. and Valdes, R. Jr. Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clin. Chem. 1997; 43: 254–66

    CAS  PubMed  Google Scholar 

  182. Kelsey, K. T., Ross, D., Traver, R. D. et al. Ethnic variation in the prevalence of a common NAD (P) H quinone oxidoreductase polymorphism and its implication for anticancer chemotherapy. Brit. J. Cancer 1997; 76: 852–4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Vermes, A., Guchelaar, H. J. and Koopmans, R. P. Individualization of cancer chemotherapy based on cytochrome P450 polymorphism: a pharmacogenetic approach. Cancer Treat. Rev. 1997; 23: 321–39

    CAS  Google Scholar 

  184. Gonzalez, F. J. and Idle, J. R. Pharmacogenetic phenotyping and genotyping. Present status and future potential. Clin. Pharmacokinet. 1994; 26: 56–70

    Article  Google Scholar 

  185. Seidegard, T., Voracheck, W. R., Pero, R. W. and Pearson, W. R. Hereditary differences in the expression of human glutathione transferase active on transstilbane oxide are due to gene deletion. Proc. Natl. Acad. Sci. USA 1988; 85: 7293–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  186. Beard, P. Genetic Polymorphism of Glutathione Transferase in Men. In: Pickett, C. B. and Mantle, T. J. (eds), GlutathioneTransferase and Drug Resistance (eds:) Taylor and Francis, 1990: 232–41

    Google Scholar 

  187. Norris, K. K., DeAngelo, T. M. and Vessell, S. E. G. Genetic and environmental factors that regulate cytosolic epoxide hydrolase acivity in human lymphocytes. J. Clin. Invest. 1989; 84: 1749–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sanyal, M.K. (2001). Metabolism of Chemotherapeutic Drugs by Maternal and Conceptus Tissues. In: Barnea, E.R., Jauniaux, E., Schwartz, P.E. (eds) Cancer and Pregnancy. Springer, London. https://doi.org/10.1007/978-1-4471-0707-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0707-1_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1184-9

  • Online ISBN: 978-1-4471-0707-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics