Advertisement

Transplacental Carcinogenesis: Role of Chemicals, Radiation and Viruses

  • Orna Diav-Citrin
  • Asher Ornoy
  • Richard K. Miller
Chapter

Abstract

During the early 1960s, experimentalists were becoming more concerned about the unique sensitivity of the conceptus to induction of cancer following in utero exposure.1,2 Reports appeared that linked in utero exposure to ethylnitrosourea (ENU) and the induction of brain tumors, schwanoma and gliomas in adult rat offspring, lung tumors in mice and Wilms (renal) tumors in opossum pups.3,4,5 Rice and associates’ demonstrated that ENU given during pregnancy could result in the induction of choriocarcinoma in the mother Patas monkey. These were among the first reports of chemical induction of tumors in both offspring and mothers following in utero exposure. Of special note is that ENU has a biological half-life in the body of approximately 8–10 minutes. These examples of the unique sensitivity of the unborn to not only structural anomalies but also tumorigenesis has further raised interest in understanding the malleability of the developing organism in response to therapeutic, occupational and environmental exposures.

Keywords

Acute Lymphoblastic Leukemia Childhood Cancer Prenatal Exposure Fetal Alcohol Syndrome Female Reproductive Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tomatis L, Mohr U. (eds) Transplacental Carcinogenesis. IARC Publications, Lyon, 1973.Google Scholar
  2. 2.
    Rice JM, (ed.) Perinatal Carcinogenesis. National Cancer Institute Monograph 51, DHEW Publication, Bethesda, MD 1979.Google Scholar
  3. 3.
    Druckrey H. Chemical structure and action in transplacental carcinogenesis and teratogenesis. In Tomatis L, and Mohr U. (eds) Transplacental Carcinogenesis, IARC Publications, Lyon, 1973.Google Scholar
  4. 4.
    Rice JM. The biological behaviour of transplacentally induced tumours in mice. In Tomatis L, and Mohr U. (eds) Transplacental Carcinogenesis, IARC Publications, Lyon, 1973.Google Scholar
  5. 5.
    Jurgelski W Jr, Hudson PM, Falk HL, Kotin P. Embryonal neoplasms in the opossum: a new model for solid tumors of infancy and childhood. Science 1976; 193: 328–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Rice JM, Williams GM, Palmer AE, London WT, Sly DL. Pathology of gestation choriocarcinoma induced in Patas monkeys by ethylnitrososurea given during pregnancy. Placenta 1981; (Suppl 3 ) 223–30.Google Scholar
  7. 7.
    MacMahon B. Prenatal X-ray exposure and childhood cancer. J Natl Cancer Inst 1962; 28: 1173–91.PubMedGoogle Scholar
  8. 8.
    Hewitt D, Sanders B, Stewart A. Reliability of data reported by case and control mothers. Monthly Bull Ministry of Health and Public Health Laboratory Service 1966; 25: 80–5.Google Scholar
  9. 9.
    Smith OW, Smith G, Hurwitz S. Increased excretion of pregnandediol in pregnancy from DES with special reference to the prevention of late pregnancy accidents. Am J Obstet Gynecol 1946; 51: 411–21.PubMedGoogle Scholar
  10. 10.
    Herbst AL, Ulfelder H, Poskanzer DC. (1971) Adenocarcinoma of the vagina: association of maternal stilbestrol therapy with tumor appearing in young women. N Engl J Med 1971; 284: 878–81.CrossRefGoogle Scholar
  11. 11.
    Herbst AL (1981) Clear cell adenocarcinoma and the current status of DES-exposed females. Cancer 1981; 48: 484–8.CrossRefGoogle Scholar
  12. 12.
    Kaufmann RH, Adam E, Binder GL, Gerthoffer E. Upper genital tract changes and pregnancy outcome in offspring exposed in utero to diethylstilbestrol. Am J Obstet Gynecol 1980; 137: 299–308.Google Scholar
  13. 13.
    Goldberg J, Falcone T. Effect of diethylstilbestrol on reproductive function. Fertil Steril 1999; 72: 1–7.PubMedCrossRefGoogle Scholar
  14. 14.
    McLachlan J, Newbold R, Bullock B. Long term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol. Canc Res 1980; 40: 3988–99.Google Scholar
  15. 15.
    Miller C, Sassoon D. Wnt 7a maintains appropriate uterine patterning during the development of the mouse female reproductive tract. Development 1998; 125: 3201–11.PubMedGoogle Scholar
  16. 16.
    Miller C, Degenhardt K, Sassoon D. Fetal exposure to DES results in deregulation of Wnt7a during uterine morphogenesis. Nature Genetics 1998; 20: 228–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Walker B, Haven MI. Intensity of multigenerational carcinogenesis from diethylstilbestrol in mice. Carcinogenesis 1997; 18: 791–3.PubMedCrossRefGoogle Scholar
  18. 18.
    Baggs RB, Miller RK, Odoroff C. Carcinogenicity of diethylstilbestrol in the Wistar rat: Effect of postnatal oral contraceptive steroids. Canc Res 1991; 51: 3311–5.Google Scholar
  19. 19.
    Henry EC, Miller RK. Disposition of Diethylstilbestrol and Estradiol in the fetal rat: correlation with teratogenic potency. Biochem Pharm 1986; 35: 1993–2001.PubMedCrossRefGoogle Scholar
  20. 20.
    Henry EC, Miller RK, Baggs RB. Direct fetal injections of Diethylstilbestrol and 17β-estradiol: a method for investigating their teratogenicity. Teratology 1984; 29: 297–304.PubMedCrossRefGoogle Scholar
  21. 21.
    Marselos M, Tomatis L. Diethylstilboestrol: II, Pharmacology, toxicology and carcinogenicity in experimental animals. Eur J Cancer 1993; 29A: 149–55.CrossRefGoogle Scholar
  22. 22.
    Newbold R, Hanson R, Jefferson W. Ontogeny of lactoferin in the developing mouse uterus: a marker of early hormone response. Biol Reprod 1997; 56: 1147–57.PubMedCrossRefGoogle Scholar
  23. 23.
    Hanselaar A, van Loosbroek M, Schuurbiers O, Helmerhorst T, Bulten J, Bernheim J. Clear cell adenocarcinoma of the vagina and cervix: an update of the central Netherlands registry showing twin age incidence peaks. Cancer 1997; 79: 2229–36.PubMedCrossRefGoogle Scholar
  24. 24.
    Walker B. Animal models of prenatal exposure to diethylstilbestrol. In Napalkov NP, Rice TM, Tomatis L, Yamaski H. (eds) Perinatal and multigeneration carcinogenesis. IARC Scientific Publications, Lyon, No. 96, 1989.Google Scholar
  25. 25.
    Walker B, Kurth L. Multigenerational carcinogenesis from diethylstilbestrol investigated by blastocyst transfers in mice. Int J Canc 1995; 61: 249–52.CrossRefGoogle Scholar
  26. 26.
    Walker B, Haven M. Cancer risk assessment, J Natl Med Assoc 1997; 89: 21–6.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Newbold R, Hanson R, Jefferson W, Bullock B, Haseman J, McLachlan J. Increased tumors but uncompromised fertility in the female descendants of mice exposed developmentally to diethylstilbesterol. Carcinogenesis 1998; 19: 1655–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Miller RK, Heckmann ME, McKenzie RC. (1982) Diethylstilbestrol: placental transfer, metabolism, covalent binding and fetal distribution in the Wistar rat. J Pharmacol Expt Therap 1982; 220: 358–65.Google Scholar
  29. 29.
    Hanson JW. Fetal hydantoin effects. Teratology 1986; 33: 349–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Anthony JJ. Malignant lymphoma associated with hydantoin drugs. Arch Neurol 1970; 22: 450–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Hoover R, Fraumeni JF Jr. 1975. Drugs. In: Persons at high risk of cancer: an approach to cancer etiology and control. Fraumeni JF Jr (ed.) New York: Academic Press, 1975.Google Scholar
  32. 32.
    Pendergrass TW, Hanson JW. Fetal hydantoin syndrome and neuroblastoma. Lancet 1976; 2: 150.PubMedCrossRefGoogle Scholar
  33. 33.
    Koren G, Demitrakoudis D, Weksberg R, Rieder M, Shear NH, Sonely M, Shandling B, Spielberg S. Neuroblastoma after prenatal exposure to phenytoin: cause and effect? Teratology 1989; 40: 157–62.PubMedCrossRefGoogle Scholar
  34. 34.
    Ehrenbard LT, Chaganti RSK. Cancer in the fetal hydantoin syndrome. Lancet 1981; 2: 97.PubMedCrossRefGoogle Scholar
  35. 35.
    Al-Shammri S, Guberman A, Hsu E. Neuroblastoma and fetal exposure to phenytoin in a child without dysmorphic features. Can J Neurol Sci 1992; 19: 243–5.PubMedGoogle Scholar
  36. 36.
    Seeler RA, Israel TN, Royal JE, Kaye CI, Rao S, Abulaben M. Ganglioneuroblastoma and fetal hydantoin-alcohol syndromes. Pediatrics 1979; 63: 524–7.PubMedGoogle Scholar
  37. 37.
    Jiminez JF, Seibert RW, Char F, Brown RE, Seibert JJ. Melanocytic neuroectodermal tumor of infancy and fetal hydantoin syndrome. Am J Pediatr Hematol Oncol 1981; 3: 9–15.Google Scholar
  38. 38.
    Lipson A, Bale P. Ependymoblastoma associated with prenatal exposure to diphenylhydantoin and methylphenobarbitone. Cancer 1985; 55: 1859–62.PubMedCrossRefGoogle Scholar
  39. 39.
    Blattner WA, Henson DE, Young RC, Fraumeni JF Jr. Malignant mesenchymoma and birth defects. Prenatal exposure to phenytoin. JAMA 1977; 238: 334–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Taylor WF, Myers M, Taylor WR. Extrarenal Wilms’ tumour in an infant exposed to intrauterine phenytoin. Lancet 1980; 2: 481–2.PubMedCrossRefGoogle Scholar
  41. 41.
    Cohen MM Jr. Neoplasia and the fetal alcohol and hydantoin syndromes. Neurobehav Toxicol Teratol 1981, 3: 161–2.PubMedGoogle Scholar
  42. 42.
    Koussef BG. Subcutaneous vascular abnormalities in fetal hydantoin syndrome. Birth Defects 1982; 18: 51–4.Google Scholar
  43. 43.
    Bostrom B, Nesbit ME Jr. Hodgkin disease in a child with fetal alcohol-hydantoin syndrome. J Pediatr 1983; 103: 760–2.PubMedCrossRefGoogle Scholar
  44. 44.
    Sholler GF, Hawker RE, Nunn GR, Bale P, Bergin M. Primary left ventricular rhabdomyosarcoma in a child: noninvasive assessment and successful resection of a rare tumor. J Thorac Cardiovasc Surg 1987; 93: 465–8.PubMedGoogle Scholar
  45. 45.
    Murray JC, Hill RM, Hegemier S, Hurwitz RL. Lymphoblastic lymphoma following prenatal exposure to phenytoin. J Pediatr Hematol Oncol 1996; 18: 241–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Sherman S, Roizen N. Fetal hydantoin syndrome and neuroblastoma. Lancet 1976; 2: 517.CrossRefGoogle Scholar
  47. 47.
    Ramilo J, Harris VJ. Neuroblastoma in a child with the hydantoin and fetal alcohol sydrome. The radiographic features. Br J Radiol 1979; 52: 993–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Fowler MG. Follow-up of children exposed to perinatal antiretrovirals. Teratology 2000; 61: 395–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Rich KC, Fowler MG, Mofenson LM, Abboud R, Pitt J, Diaz C, Hanson IC, Cooper E, Mendez H, and the Women and Infants Transmission Study Group. Maternal and infant factors predicting disease progression in human immunodeficiency virus type 1-infected infants. Pediatrics 2000; 105: E8–18.PubMedCrossRefGoogle Scholar
  50. 50.
    Physicians Desk Reference 2000.Google Scholar
  51. 51.
    Culnane M, Fowler MG, Lee S, et al. Lack of long-term effects of in utero exposure to zidovudine among uninfected children born to HIV-infected women. JAMA 1999; 354: 1084–9.Google Scholar
  52. 52.
    Hanson IC, Antonelli TR, Sperling RS, et al. Lack of tumors in infants with perinatal HIV type I exposure and fetal/neonatal exposure to zidovudine. J AIDS 1999; 20: 463–7.Google Scholar
  53. 53.
    Blanche S, Tardieu M, Rustin P et al. Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet 1999; 354: 1084–9PubMedCrossRefGoogle Scholar
  54. 54.
    Brinkman K, Smetink JA, Romjin J, Reiss P. Mitochondrial toxicity induced by nucleoside-analogue reverse transcriptase inhibitors is a key in the pathogenesis of antiretroviral-related lipodystrophy. Lancet 1999; 354: 1112–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Walker UA, Setzer B, Volksbeck SI. Toxicity of nucleoside-analogue reverse-transcriptase inhibitors. Lancet 2000; 355: 1096.PubMedCrossRefGoogle Scholar
  56. 56.
    Ayers KM, Torrey CE, Reynolds DJ. A transplacental carcinogenicity bioassay in CD-1 mice with zidovudine. Fund Appl Tox 1997; 38: 195–8.CrossRefGoogle Scholar
  57. 57.
    Olivero OA, Anderson LM, Diwan BA, et al. Transplacental effects of 3’-azido-2’, 3’dideoxythymidine (AZT): tumorigenicity in mice and genotoxicity in mice and monkeys. J Natl Cancer Inst 1997; 89: 1602–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Brent RL. The effect of embryonic and fetal exposure to X-ray, microwave and ultrasound: counseling the pregnant and non-pregnant patient about these risks. Sem Oncol 1989; 16: 347–68.Google Scholar
  59. 59.
    Miller RW. Delayed effects occurring within the first decade after exposure of young individuals to the Hiroshima atomic bomb. Pediatrics 1956; 18: 1–18.PubMedGoogle Scholar
  60. 60.
    Yoshimoto Y, Kato H, Schull WJ. Risk of cancer among children exposed in utero to A-bomb radiations 1950–84. Lancet 1988; 2: 665–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Stewart A, Webb J, Giles D, Hewitt D. Malignant disease in childhood and diagnostic irradiation in utero. Lancet 1956; 2: 447.CrossRefGoogle Scholar
  62. 62.
    Stewart A, Webb J, Hewitt D. A survey of childhood malignancies. Br Med J 1958; 1: 1495–1508.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    MacMahon B. Prenatal X-ray exposure and childhood cancer. J Natl Cancer Inst 1962; 28: 1173–91.PubMedGoogle Scholar
  64. 64.
    Hewitt D, Sanders B, Stewart A. Reliability of data reported by case and control mothers. Monthly Bull Ministry of Health and Public Health Laboratory Service 1966; 25: 80–5.Google Scholar
  65. 65.
    Knox EG, Stewart AM, Kneale GW, Gilman EA. Prenatal irradiation and childhood cancer. J Soc Radiol Prot 1987; 7: 177–89.CrossRefGoogle Scholar
  66. 66.
    Gilman EA, Stewart AM, Knox EG, Kneale GW. Trends in obstetric radiology, 1939–81. J Radiol Prot 1989; 9: 93–101.CrossRefGoogle Scholar
  67. 67.
    Doll R, Wakeford R. Risk of childhood cancer from fetal irradiation. Br J Radiol 1997; 70: 130–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Hall EJ. Scientific view of low-level radiation risks. Radiographics 1991; 11: 509–18.PubMedCrossRefGoogle Scholar
  69. 69.
    Hoppe-Seyler F, Butz K. Molecular mechanisms of virus-induced carcinogenesis: the interaction of viral factors with cellular tumor suppressor proteins. J Mol Med 1995; 73: 529–38.PubMedCrossRefGoogle Scholar
  70. 70.
    Greaves M.F. Aetiology of acute leukaemia. Lancet 1997; 349: 344–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G, Saha V, Biondi A, Greaves MF. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 1999; 356: 1499–1503.CrossRefGoogle Scholar
  72. 72.
    Bithell JF, Draper GJ, Gorbach PD. Association between malignant disease in children and maternal virus infection. Brit Med J 1973; 24: 706–8.CrossRefGoogle Scholar
  73. 73.
    Fine PEM, Adelstein AM, Snowman J, Clarkson JA, Evans SM. Long term effects of exposure to viral infections in utero. Brit Med J 1985; 290: 509–51.CrossRefGoogle Scholar
  74. 74.
    Stewart A, Webb J, Hewitt D. A survey of childhood malignancies. Brit Med J 1958; 4: 1495–1508.CrossRefGoogle Scholar
  75. 75.
    Zerbini M, Ernberg I. Can Epstein-Barr virus infect and transform all the b-lymphocytes of human cord blood? J Genet Virol 1983; 64: 539–47.CrossRefGoogle Scholar
  76. 76.
    de-The, G. Is Burkitt’s lymphoma related to perinatal infection by Epstein-Barr virus? Lancet 1977; Feb. 12: 335–8.Google Scholar
  77. 77.
    Jarrett RF, MacKenzie J. Epstein-Barr virus and other candidate viruses in the pathogenesis of Hodgkin’s disease. Sem Hematol 1999; 36: 260–9.Google Scholar
  78. 78.
    Jordan MC, Jordan GW, Stevens JG, Miller G. Latent herpesviruses of humans. Ann Int Med 1984; 100: 866–80.PubMedCrossRefGoogle Scholar
  79. 79.
    McKinney PA, Juszczak E, Findlay E, Smith K, Thomson CS. Pre-and perinatal risk factors for childhood leukaemia and other malignancies: a Scottish case control study. Brit J Canc 1999; 80: 1844–51.CrossRefGoogle Scholar
  80. 80.
    Schüz J, Kaatsch P, Kaletsch U, Meinert R, Michaelis J. Association of childhood cancer with factors related to pregnancy and birth. Intl J Epidemiol 1999; 28: 6312–639.CrossRefGoogle Scholar
  81. 81.
    Adelstein AM, Donovan JW. Malignant disease in children whose mothers had chickenpox, mumps, or rubella in pregnancy. Brit Med J 1972; iv:629.Google Scholar
  82. 82.
    Vianna NJ, Polan AK. Childhood lymphatic leukemia: prenatal seasonality and possible association with congenital varicella. Am J Epidemiol 1976; 103: 321–32.PubMedGoogle Scholar
  83. 83.
    Till M, Rapson N, Smith PG. Family studies in acute leukaemia in childhood: a possible association with autoimmune disease. Brit J Canc 1979; 40: 62–71.CrossRefGoogle Scholar
  84. 84.
    Enders G, Miller E, Cradock-Watson J et al Consequences of varicella and herpes zoster in pregnancy. Prospective study of 1739 cases. Lancet 1994; 343: 1548–51.PubMedCrossRefGoogle Scholar
  85. 85.
    Grody WW, Lewin KJ, Naeim F. Detection of cytomegalovirus DNA in classic and epidemic Kaposi’s sarcoma by in situ hybridization. Hum Pathol 1988; 19: 524–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Rezza G, Andreoni M, Dorrucci M, Pezzotti P, Monini P, Zerboni R, Salassa B, Congangeli V, Sarmati L, Nicastri E, Barbanera M, Pristera R, Aiuti F, Ortona L, Ensoli B. Human herpesvirus 8 seropositivity and risk of Kaposi’s sarcoma and other acquired immunodeficiency syndrome-related diseases. J Natl Canc Inst 1999; 91: 1468–74.CrossRefGoogle Scholar
  87. 87.
    Roman E, Ansell P, Bull D. Leukaemia and non-Hodgkin’s lymphoma in children and young adults: are prenatal and neonatal factors important determinants of disease? Brit J Canc 1997; 76: 406–15.CrossRefGoogle Scholar
  88. 88.
    Selacek TV, Lindheim S, Eder C, Hasty L, Woodland M, Ludomirsky A, Rando RF Mechanism for human papillomavirus transmission at birth. Am J Obstet Gynecol 1989; 161: 55–9.CrossRefGoogle Scholar
  89. 89.
    Puranen M, Yliskoski M, Saarikoski S, Syrjanen K, Syrjanen S. Vertical transmission of human papillomavirus from infected mothers to their newborn babies and persistence of the virus in childhood. Am J Obstet Gynecol 1996; 174: 694–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Watts DH, Koutsky LA, Holmes KK, Goldman D, Kuypers J, Kiviat NB, Galloway DA. Low risk of perinatal transmission of human papillomavirus: results from a prospective cohort study. Am J Obstet Gynecol 1998; 178: 365–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Pakarian F, Kaye J, Cason J, Kell B, Jewers R, Derias DW, Raju KS, Best JM. Cancer associated human papillomaviruses: perinatal transmission and persistence. Brit J Obstet Gynaecol 1994; 101: 514–7.CrossRefGoogle Scholar
  92. 92.
    Chen PJ, Chen DS. Hepatitis B virus infection and hepatocellular carcinoma: molecular genetics and clinical perspectives. Sem Liver Diseases 1999; 19: 253–62.CrossRefGoogle Scholar
  93. 93.
    Chang MH, Chen DS, Hsu HC, Hsu HY, Lee CY. Maternal transmission of hepatitis B virus in childhood hepatocellular carcinoma. Cancer 1989; 64: 2377–80.PubMedCrossRefGoogle Scholar
  94. 94.
    Tong MJ, Govindarajan S. Primary hepatocellular carcinoma following perinatal transmission of hepatitis B. Western J Med 1988; 148: 205–8.Google Scholar
  95. 95.
    Inaba N et al. Placental transmission of hepatitis B e antigen and clinical significance of hepatitis B e antigen titers in children born to hepatitis B e antigen-positive carrier women. Am J Obstet Gynecol 1984; 149: 580–1.PubMedCrossRefGoogle Scholar
  96. 96.
    Li L et al. Transplacental transmission of hepatitis B virus. Lancet 1988; 2: 833–4.Google Scholar
  97. 97.
    Wejstal R, Widell A, Mansson, AS, Hermodsson S, Norkrans G. Mother-to-infant transmission of hepatitis C virus. Lancet 1995; 345: 289–91.CrossRefGoogle Scholar
  98. 98.
    Miller, RK. Perinatal toxicology: its recognition and fundamentals, Am J Indust Med 1983; 4: 205–44.CrossRefGoogle Scholar
  99. 99.
    Allen RW, Ogden B, Bentley FL, Jung AL. Fetal hydantoin syndrome, neuroblastoma, and hemorrhagic disease in a neonate. JAMA 1980; 244: 1464–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2001

Authors and Affiliations

  • Orna Diav-Citrin
  • Asher Ornoy
  • Richard K. Miller

There are no affiliations available

Personalised recommendations