Skip to main content
  • 516 Accesses

Abstract

The lung has two basic simultaneous respiratory functions: the oxygenation of the incoming desaturated venous blood, and the removal of carbon dioxide and consequently of protons (H+) from this incoming blood. To perform this task adequately, both the ventilatory and the circulatory lung systems must be adapted one to another so that the ratio of the distribution of ventilation to perfusion is optimal. Ultimately, this ratio determines the functional quality of gas exchange. Apart from measurement of blood gases, there is no simple test available to give a general assessment of gas exchange in a given patient. Blood gas values, when abnormal, give no clue as to what aspect of lung function is impaired. Furthermore, these values tend to become abnormal only in the late or acute phase of lung diseases, because of the remarkable flexibility of ventilation-perfusion control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quanjer PH, Tammeling GJ, Cotes JE, et al. (1993) Lung volumes and forced ventilatory flows. Eur Respir J 6(suppl. 16): 15–40.

    Google Scholar 

  2. West JB (1990) Respiratory physiology. The essentials, 4th edn. Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  3. Becklake MR, Permut S (1979) Evaluation of tests of lung function for “screening” for early detection of chronic obstructive lung disease. In P.T. Macklem and S. Permut (eds) The lung in the transition between health end disease. Marcel Dekker, New York, pp 345–387.

    Google Scholar 

  4. Brulot N, Kadas V, Grassino A, et al. (1992) Positional variation in lung volumes in COPD. Am Rev Respir Dis 145:A764.

    Google Scholar 

  5. ATS (1995) Standardization of spirometry, 1994 update. Am J Respir Crit Care Med 152:1107–1136.

    Google Scholar 

  6. ATS (1991) Lung function testing: Selection of reference values and interpretative strategies. Am Rev Respir Dis 144:1202–1218.

    Article  Google Scholar 

  7. Hutchinson J (1846) On the capacity of the lungs, and on the respiratory movements, with the view of establishing a precise and easy method of detecting disease by the spirometer. Lancet i:630–632.

    Google Scholar 

  8. Derenne J-P (1981) Physiologie et exploration fonctionnelle respiratoires. In Encyclopédie de Medico-Chirurgicale, Poumon. Elsevier, Paris, pp 6000 A6070–6000 A6090.

    Google Scholar 

  9. Hyatt RE, Black LF (1973) The flow-volume curve. A current perspective. Am Rev Respir Dis 107:191–199.

    PubMed  CAS  Google Scholar 

  10. Knudson RJ, Slatin RC, Lebowitz MD, et al. (1976) The maximal expiratory flow-volume curve. Normal standards, variability, and effects of age. Am Rev Respir Dis 113:587–600.

    PubMed  CAS  Google Scholar 

  11. Leff AR, Schumacker PT (1993) Respiratory physiology. Basics and applications. WB Saunders, Philadelphia.

    Google Scholar 

  12. Pride NB, Permut S, Riley RL, et al. (1967) Determinants of maximum expiratory flow from the lungs. J Appl Physiol 23:646–662.

    PubMed  CAS  Google Scholar 

  13. Chan ED, Irvin CG (1995) The detection of collapsible airways contributing to airflow limitation. Chest 107:856–859.

    Article  PubMed  CAS  Google Scholar 

  14. Bass H (1973) The flow volume loop: Normal standards and abnormalities in chronic obstructive pulmonary disease. Chest 63:171–176.

    Article  PubMed  CAS  Google Scholar 

  15. Hathirat S, Renaetti AD, Jr, Mitchell M (1970) Measurement of the total lung capacity by helium dilution in a constant volume system. Am Rev Respir Dis 102:760–770.

    PubMed  CAS  Google Scholar 

  16. Darling RC, Cournanad A, Richards DW, Jr (1940) Studies on intra-pulmonary mixture of gases. Open circuit methods for measuring residual air. J Clin Invest 19:609–618.

    Article  PubMed  CAS  Google Scholar 

  17. DuBois AB, Botelho SY, Bedell GN, et al. (1956) A rapid Plethysmographie method for measuring thoracic gas volume. A comparison with a nitrogen wash-out method for measuring functional residual capacity. J Clin Invest 35:322–326.

    Article  PubMed  CAS  Google Scholar 

  18. Mead J (1960) Volume displacement body Plethysmograph for measurements on human subjects. J Appl Physiol 15:736–740.

    Google Scholar 

  19. Rodenstein DO, Stanescu DC, Francis C (1982) Demonstration of failure of body plethysmography in airway obstruction. J Appl Physiol 52:949–954.

    PubMed  CAS  Google Scholar 

  20. Rodenstein DO, Stanescu DC (1982) Reassessment of lung volume measurement by helium dilution and by body plethysmography in chronic air-flow obstruction. Am Rev Respir Dis 126:1040–1044.

    PubMed  CAS  Google Scholar 

  21. DuBois AB, Botelho SY, Comroe JH, Jr (1956) A new method for measuring airway resistance in a man using a body Plethysmograph: Values in normal subjects and in patients with respiratory disease. J Clin Invest 35:327–335.

    Article  PubMed  CAS  Google Scholar 

  22. Desager KN, Buhr W, Willemen M, et al. (1991) Measurement of total respiratory impedance in infants by the forced oscillation technique. J Appl Physiol 71:770–776.

    PubMed  CAS  Google Scholar 

  23. Cockcroft DW, Hargreave FE (1990) Airway responsiveness. Relevance of random population data to clinical usefulness. Am Rev Respir Dis 142:497–500.

    Article  PubMed  CAS  Google Scholar 

  24. Cockcroft DW, Murdock KY, Berscheid BA, et al. (1992) Sensitivity and specificity of histamine PC20 determination in a random selection of young college students. J Allergy Clin Immunol 89:23–30.

    Article  PubMed  CAS  Google Scholar 

  25. Britton J (1988) Is hyperreactivity the same as asthma? Eur Respir J 1:478–479.

    PubMed  CAS  Google Scholar 

  26. Backer V, Groth S, Dirksen A, et al. (1991) Sensitivity and specificity of the histamine challenge test for the diagnosis of asthma in an unselected sample of children and adolescents. Eur Respir J 4:1093–1100.

    PubMed  CAS  Google Scholar 

  27. Sterk PJ, Fabbri LM, Quanjer PH, et al. (1993) Airway responsiveness. Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Eur Respir J 6(suppl. 16):53–83.

    Google Scholar 

  28. Tantucci C, Duguet A, Similowski T, et al. (1998) Effect of salbutamol on dynamic hyperinflation in chronic obstructive pulmonary disease patients. Eur Respir J 12:799–804.

    Article  PubMed  CAS  Google Scholar 

  29. O’Donnell DE, Lam M, Webb KA (1998) Measurement of symptoms, lung hyperinflation, and endurance during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 158:1557–1565.

    PubMed  Google Scholar 

  30. O’Donnell DE, Lam M, Webb KA (1999) Spirometrie correlates of improvement in exercise performance after anticholinergic therapy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160:542–549.

    PubMed  Google Scholar 

  31. Rodarte JR, Hyatt RE, Cortese DA (1975) Influence of expiratory flow on closing capacity at low expiratory flow rates. J Appl Physiol 39:60–65.

    PubMed  CAS  Google Scholar 

  32. Ruppel GL (1998) Manual of pulmonary function testing, 7th edn. Mosby, Saint Louis, MO.

    Google Scholar 

  33. ATS (1995) Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 152:S77–S121.

    Google Scholar 

  34. Ulmer W, Kowalski J, Schmidt EW (1997) The flow-volume curve in patients with obstructive airway diseases. Partial analysis and functional importance. Pneumonol Alergol Pol 65:435–445.

    PubMed  CAS  Google Scholar 

  35. O’Donnell DE, Webb KA (1992) Breathlessness in patients with severe chronic airflow limitation. Physiologic correlations. Chest 102:824–831.

    Article  PubMed  Google Scholar 

  36. Yernault JC, Englert M (1974) Static mechanical lung properties in young adults. Bull Eur Physiopathol Respir 10:435–450.

    CAS  Google Scholar 

  37. Rahn H, Otis AB, Chadwick L, et al. (1946) The pressure-volume diagram of the thorax and lung. Am J Physiol 146:161–178.

    PubMed  CAS  Google Scholar 

  38. Turner JM, Mead J, Wohl ME (1968) Elasticty of human lung in relation to age. J Appl Physiol 25:664–671.

    PubMed  CAS  Google Scholar 

  39. Dekhuijzen PNR, Decramer M (1992) Steroid-induced myopathy and its significance to respiratory disease: A known disease rediscovered. Eur Respir J 5:997–1003.

    PubMed  CAS  Google Scholar 

  40. Agostoni E, Rahn H (1960) Abdominal and thoracic pressures at different lung volumes. J Appl Physiol 15:1087–1092.

    PubMed  CAS  Google Scholar 

  41. Similowski T, Yan S, Gauthier AP, et al. (1991) Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med 325:917–923.

    Article  PubMed  CAS  Google Scholar 

  42. Similowski T, Fleury B, Launois S, et al. (1989) Cervical magnetic stimulation: A new and painless method for bilateral phrenic nerve stimulation in conscious humans. J Appl Physiol 67:1311–1318.

    PubMed  CAS  Google Scholar 

  43. Yan S, Gauthier AP, Similowski T, et al. (1992) Evaluation of human diaphragm contractility using mouth pressure twitches. Am Rev Respir Dis 145:1064–1069.

    Article  PubMed  CAS  Google Scholar 

  44. Feldman JL, Smith JC (1995) Neural control of respiratory pattern in mammals: An overview. In Dempsey JA and Pack AI (eds) Regulation of breathing. Marcel Dekker, New York, pp 39–70.

    Google Scholar 

  45. Fitzgerald RS, Lahiri S (1986) Reflex response to chemoreceptor stimulation. In Geiger SR, Widdicombe JG, Cherniack NS, Fishman AP (eds) Handbook of physiology. Section 3: The respiratory system. American Physiological Society, Bethesda, MD, pp 313–362.

    Google Scholar 

  46. Derenne J-P (1977) Méthodes d’investigation clinique des mécanismes régulateurs de la ventilation. Bull Europ Physiopath Resp 13:681–727.

    CAS  Google Scholar 

  47. Derenne J-P, Couture J, Iscoe S, et al. (1976) Occlusion pressure in man rebreathing C02 under methoxyflurane anesthesia. J Appl Physiol 40:805–814.

    PubMed  CAS  Google Scholar 

  48. Whitelaw WA, Derenne JP, Milic-Emili J (1976) Occlusion pressure as a measure of respiratory centre output in conscious man. Respir Physiol 23:181–199.

    Article  Google Scholar 

  49. Whitelaw WA, Derenne J-P (1993) Airway occlusion pressure. J Appl Physiol 74:1475–1483.

    PubMed  CAS  Google Scholar 

  50. Fenn WO, Craig AB (1963) Effect of C02 on respiration using a new method of administering C02. J Appl Physiol 18:1023–1024.

    PubMed  CAS  Google Scholar 

  51. Read DJC (1967) A clinical method for assessing the ventilatory response to carbon dioxide. Austr Ann Med 16:20–32.

    CAS  Google Scholar 

  52. Dejours P, Labrousse Y, Raynaud J, et al. (1957) Stimulus oxygène chémo-réflexe de la ventiation à basse altitude (50 m) chez l’homme. I. Au repos. J. Physiol. (Paris) 49:115–120.

    CAS  Google Scholar 

  53. Rebuck AS, Campbell EJM (1973) A clinical method for assessing the ventilatory response to hypoxia. Am Rev Respir Dis 109:345–350.

    Google Scholar 

  54. Krachman S, Criner GJ (1998) Hypoventilation syndromes. Clin Chest Med 19:139–155.

    Article  PubMed  CAS  Google Scholar 

  55. Spinelli A, Marconi G, Gorini M, et al. (1992) Control of breathing in patients with myasthenia gravis. Am Rev Respir Dis 145:1359–1365.

    PubMed  CAS  Google Scholar 

  56. Scano G, Gigliotti F, Duranti R, et al. (1993) Control of breathing in patients with neuromuscular diseases. Monaldi Arch Chest Dis 48:87–91.

    PubMed  CAS  Google Scholar 

  57. AARC (1993) In-vitro pH and blood gas analysis and hemoximetry. Respir Care 38:505–510.

    Google Scholar 

  58. Severinghaus JW, Kelleher JF (1992) Recent developments in pulse oximetry. Anesthesiology 76:1018–1038.

    Article  PubMed  CAS  Google Scholar 

  59. Gardner NG (1996) The pathophysiology of hyperventilation disorders. Chest 109:516–534.

    Article  PubMed  CAS  Google Scholar 

  60. Delclaux B, Orcel B, Housset B, et al. (1994) Arterial blood gases in elderly persons with chronic obstructive pulmonary disease (COPD). Eur Respir J 7:856–861.

    PubMed  CAS  Google Scholar 

  61. Forster RE (1987) Diffusion of gases across the alveolar membrane. In Fahri LF, Tenney SM (eds) Handbook of physiology: The respiratory system. Section 3: Gas exchange. American Physiological Society, Bethesda, MD, pp 71–88.

    Google Scholar 

  62. Cotes JE, Chinn DJ, Quanjer PH, et al. (1993) Standardization of the measurement of transfer factor (diffusing capacity). Eur Respir J 6 (suppl. 16):41–52.

    Google Scholar 

  63. Yernault JC, Paiva M (1986) In vivo diagnosis of pulmonary emphysema: An uncompletely resolved issue. Bull Eur Physiopathol Respir 22:95–97.

    PubMed  CAS  Google Scholar 

  64. AARC (1992) Clinical practice guideline: Exercise testing for evaluation of hypoxemia and/or desaturation. Respir Care 37:907–912.

    Google Scholar 

  65. Hansen JE (1984) Exercise instruments, schemes, and protocols for evaluating the dyspneic patient. Am Rev Respir Dis 129(Suppl):S25–S27.

    PubMed  CAS  Google Scholar 

  66. Wasserman K (1984) The anaerobic threshold measurement in exercise testing. Clin Chest Med 5:77–88.

    PubMed  CAS  Google Scholar 

  67. ACCP/AACVPR (1997) Pulmonary rehabilitation. Joint ACCP/-AACVPR evidence-based guidelines. Chest 112:1363–1396.

    Article  Google Scholar 

  68. Straus C, Zelter M (2000) Sémiologie Fonctionnelle. In Huchon G (ed) Pneumologie pour le practicien. Masson, Paris, in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this chapter

Cite this chapter

Straus, C., Similowski, J., Derenne, JP., Zelter, M. (2001). Pulmonary Function Tests. In: Sperber, M. (eds) Radiologic Diagnosis of Chest Disease. Springer, London. https://doi.org/10.1007/978-1-4471-0693-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0693-7_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1179-5

  • Online ISBN: 978-1-4471-0693-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics