Pulmonary Function Tests

  • C. Straus
  • J. Similowski
  • J.-P. Derenne
  • M. Zelter

Abstract

The lung has two basic simultaneous respiratory functions: the oxygenation of the incoming desaturated venous blood, and the removal of carbon dioxide and consequently of protons (H+) from this incoming blood. To perform this task adequately, both the ventilatory and the circulatory lung systems must be adapted one to another so that the ratio of the distribution of ventilation to perfusion is optimal. Ultimately, this ratio determines the functional quality of gas exchange. Apart from measurement of blood gases, there is no simple test available to give a general assessment of gas exchange in a given patient. Blood gas values, when abnormal, give no clue as to what aspect of lung function is impaired. Furthermore, these values tend to become abnormal only in the late or acute phase of lung diseases, because of the remarkable flexibility of ventilation-perfusion control.

Keywords

Helium Respiration Anemia Carbon Monoxide Histamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Quanjer PH, Tammeling GJ, Cotes JE, et al. (1993) Lung volumes and forced ventilatory flows. Eur Respir J 6(suppl. 16): 15–40.Google Scholar
  2. 2.
    West JB (1990) Respiratory physiology. The essentials, 4th edn. Williams and Wilkins, Baltimore, MD.Google Scholar
  3. 3.
    Becklake MR, Permut S (1979) Evaluation of tests of lung function for “screening” for early detection of chronic obstructive lung disease. In P.T. Macklem and S. Permut (eds) The lung in the transition between health end disease. Marcel Dekker, New York, pp 345–387.Google Scholar
  4. 4.
    Brulot N, Kadas V, Grassino A, et al. (1992) Positional variation in lung volumes in COPD. Am Rev Respir Dis 145:A764.Google Scholar
  5. 5.
    ATS (1995) Standardization of spirometry, 1994 update. Am J Respir Crit Care Med 152:1107–1136.Google Scholar
  6. 6.
    ATS (1991) Lung function testing: Selection of reference values and interpretative strategies. Am Rev Respir Dis 144:1202–1218.CrossRefGoogle Scholar
  7. 7.
    Hutchinson J (1846) On the capacity of the lungs, and on the respiratory movements, with the view of establishing a precise and easy method of detecting disease by the spirometer. Lancet i:630–632.Google Scholar
  8. 8.
    Derenne J-P (1981) Physiologie et exploration fonctionnelle respiratoires. In Encyclopédie de Medico-Chirurgicale, Poumon. Elsevier, Paris, pp 6000 A6070–6000 A6090.Google Scholar
  9. 9.
    Hyatt RE, Black LF (1973) The flow-volume curve. A current perspective. Am Rev Respir Dis 107:191–199.PubMedGoogle Scholar
  10. 10.
    Knudson RJ, Slatin RC, Lebowitz MD, et al. (1976) The maximal expiratory flow-volume curve. Normal standards, variability, and effects of age. Am Rev Respir Dis 113:587–600.PubMedGoogle Scholar
  11. 11.
    Leff AR, Schumacker PT (1993) Respiratory physiology. Basics and applications. WB Saunders, Philadelphia.Google Scholar
  12. 12.
    Pride NB, Permut S, Riley RL, et al. (1967) Determinants of maximum expiratory flow from the lungs. J Appl Physiol 23:646–662.PubMedGoogle Scholar
  13. 13.
    Chan ED, Irvin CG (1995) The detection of collapsible airways contributing to airflow limitation. Chest 107:856–859.PubMedCrossRefGoogle Scholar
  14. 14.
    Bass H (1973) The flow volume loop: Normal standards and abnormalities in chronic obstructive pulmonary disease. Chest 63:171–176.PubMedCrossRefGoogle Scholar
  15. 15.
    Hathirat S, Renaetti AD, Jr, Mitchell M (1970) Measurement of the total lung capacity by helium dilution in a constant volume system. Am Rev Respir Dis 102:760–770.PubMedGoogle Scholar
  16. 16.
    Darling RC, Cournanad A, Richards DW, Jr (1940) Studies on intra-pulmonary mixture of gases. Open circuit methods for measuring residual air. J Clin Invest 19:609–618.PubMedCrossRefGoogle Scholar
  17. 17.
    DuBois AB, Botelho SY, Bedell GN, et al. (1956) A rapid Plethysmographie method for measuring thoracic gas volume. A comparison with a nitrogen wash-out method for measuring functional residual capacity. J Clin Invest 35:322–326.PubMedCrossRefGoogle Scholar
  18. 18.
    Mead J (1960) Volume displacement body Plethysmograph for measurements on human subjects. J Appl Physiol 15:736–740.Google Scholar
  19. 19.
    Rodenstein DO, Stanescu DC, Francis C (1982) Demonstration of failure of body plethysmography in airway obstruction. J Appl Physiol 52:949–954.PubMedGoogle Scholar
  20. 20.
    Rodenstein DO, Stanescu DC (1982) Reassessment of lung volume measurement by helium dilution and by body plethysmography in chronic air-flow obstruction. Am Rev Respir Dis 126:1040–1044.PubMedGoogle Scholar
  21. 21.
    DuBois AB, Botelho SY, Comroe JH, Jr (1956) A new method for measuring airway resistance in a man using a body Plethysmograph: Values in normal subjects and in patients with respiratory disease. J Clin Invest 35:327–335.PubMedCrossRefGoogle Scholar
  22. 22.
    Desager KN, Buhr W, Willemen M, et al. (1991) Measurement of total respiratory impedance in infants by the forced oscillation technique. J Appl Physiol 71:770–776.PubMedGoogle Scholar
  23. 23.
    Cockcroft DW, Hargreave FE (1990) Airway responsiveness. Relevance of random population data to clinical usefulness. Am Rev Respir Dis 142:497–500.PubMedCrossRefGoogle Scholar
  24. 24.
    Cockcroft DW, Murdock KY, Berscheid BA, et al. (1992) Sensitivity and specificity of histamine PC20 determination in a random selection of young college students. J Allergy Clin Immunol 89:23–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Britton J (1988) Is hyperreactivity the same as asthma? Eur Respir J 1:478–479.PubMedGoogle Scholar
  26. 26.
    Backer V, Groth S, Dirksen A, et al. (1991) Sensitivity and specificity of the histamine challenge test for the diagnosis of asthma in an unselected sample of children and adolescents. Eur Respir J 4:1093–1100.PubMedGoogle Scholar
  27. 27.
    Sterk PJ, Fabbri LM, Quanjer PH, et al. (1993) Airway responsiveness. Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Eur Respir J 6(suppl. 16):53–83.Google Scholar
  28. 28.
    Tantucci C, Duguet A, Similowski T, et al. (1998) Effect of salbutamol on dynamic hyperinflation in chronic obstructive pulmonary disease patients. Eur Respir J 12:799–804.PubMedCrossRefGoogle Scholar
  29. 29.
    O’Donnell DE, Lam M, Webb KA (1998) Measurement of symptoms, lung hyperinflation, and endurance during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 158:1557–1565.PubMedGoogle Scholar
  30. 30.
    O’Donnell DE, Lam M, Webb KA (1999) Spirometrie correlates of improvement in exercise performance after anticholinergic therapy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160:542–549.PubMedGoogle Scholar
  31. 31.
    Rodarte JR, Hyatt RE, Cortese DA (1975) Influence of expiratory flow on closing capacity at low expiratory flow rates. J Appl Physiol 39:60–65.PubMedGoogle Scholar
  32. 32.
    Ruppel GL (1998) Manual of pulmonary function testing, 7th edn. Mosby, Saint Louis, MO.Google Scholar
  33. 33.
    ATS (1995) Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 152:S77–S121.Google Scholar
  34. 34.
    Ulmer W, Kowalski J, Schmidt EW (1997) The flow-volume curve in patients with obstructive airway diseases. Partial analysis and functional importance. Pneumonol Alergol Pol 65:435–445.PubMedGoogle Scholar
  35. 35.
    O’Donnell DE, Webb KA (1992) Breathlessness in patients with severe chronic airflow limitation. Physiologic correlations. Chest 102:824–831.PubMedCrossRefGoogle Scholar
  36. 36.
    Yernault JC, Englert M (1974) Static mechanical lung properties in young adults. Bull Eur Physiopathol Respir 10:435–450.Google Scholar
  37. 37.
    Rahn H, Otis AB, Chadwick L, et al. (1946) The pressure-volume diagram of the thorax and lung. Am J Physiol 146:161–178.PubMedGoogle Scholar
  38. 38.
    Turner JM, Mead J, Wohl ME (1968) Elasticty of human lung in relation to age. J Appl Physiol 25:664–671.PubMedGoogle Scholar
  39. 39.
    Dekhuijzen PNR, Decramer M (1992) Steroid-induced myopathy and its significance to respiratory disease: A known disease rediscovered. Eur Respir J 5:997–1003.PubMedGoogle Scholar
  40. 40.
    Agostoni E, Rahn H (1960) Abdominal and thoracic pressures at different lung volumes. J Appl Physiol 15:1087–1092.PubMedGoogle Scholar
  41. 41.
    Similowski T, Yan S, Gauthier AP, et al. (1991) Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med 325:917–923.PubMedCrossRefGoogle Scholar
  42. 42.
    Similowski T, Fleury B, Launois S, et al. (1989) Cervical magnetic stimulation: A new and painless method for bilateral phrenic nerve stimulation in conscious humans. J Appl Physiol 67:1311–1318.PubMedGoogle Scholar
  43. 43.
    Yan S, Gauthier AP, Similowski T, et al. (1992) Evaluation of human diaphragm contractility using mouth pressure twitches. Am Rev Respir Dis 145:1064–1069.PubMedCrossRefGoogle Scholar
  44. 44.
    Feldman JL, Smith JC (1995) Neural control of respiratory pattern in mammals: An overview. In Dempsey JA and Pack AI (eds) Regulation of breathing. Marcel Dekker, New York, pp 39–70.Google Scholar
  45. 45.
    Fitzgerald RS, Lahiri S (1986) Reflex response to chemoreceptor stimulation. In Geiger SR, Widdicombe JG, Cherniack NS, Fishman AP (eds) Handbook of physiology. Section 3: The respiratory system. American Physiological Society, Bethesda, MD, pp 313–362.Google Scholar
  46. 46.
    Derenne J-P (1977) Méthodes d’investigation clinique des mécanismes régulateurs de la ventilation. Bull Europ Physiopath Resp 13:681–727.Google Scholar
  47. 47.
    Derenne J-P, Couture J, Iscoe S, et al. (1976) Occlusion pressure in man rebreathing C02 under methoxyflurane anesthesia. J Appl Physiol 40:805–814.PubMedGoogle Scholar
  48. 48.
    Whitelaw WA, Derenne JP, Milic-Emili J (1976) Occlusion pressure as a measure of respiratory centre output in conscious man. Respir Physiol 23:181–199.CrossRefGoogle Scholar
  49. 49.
    Whitelaw WA, Derenne J-P (1993) Airway occlusion pressure. J Appl Physiol 74:1475–1483.PubMedGoogle Scholar
  50. 50.
    Fenn WO, Craig AB (1963) Effect of C02 on respiration using a new method of administering C02. J Appl Physiol 18:1023–1024.PubMedGoogle Scholar
  51. 51.
    Read DJC (1967) A clinical method for assessing the ventilatory response to carbon dioxide. Austr Ann Med 16:20–32.Google Scholar
  52. 52.
    Dejours P, Labrousse Y, Raynaud J, et al. (1957) Stimulus oxygène chémo-réflexe de la ventiation à basse altitude (50 m) chez l’homme. I. Au repos. J. Physiol. (Paris) 49:115–120.Google Scholar
  53. 53.
    Rebuck AS, Campbell EJM (1973) A clinical method for assessing the ventilatory response to hypoxia. Am Rev Respir Dis 109:345–350.Google Scholar
  54. 54.
    Krachman S, Criner GJ (1998) Hypoventilation syndromes. Clin Chest Med 19:139–155.PubMedCrossRefGoogle Scholar
  55. 55.
    Spinelli A, Marconi G, Gorini M, et al. (1992) Control of breathing in patients with myasthenia gravis. Am Rev Respir Dis 145:1359–1365.PubMedGoogle Scholar
  56. 56.
    Scano G, Gigliotti F, Duranti R, et al. (1993) Control of breathing in patients with neuromuscular diseases. Monaldi Arch Chest Dis 48:87–91.PubMedGoogle Scholar
  57. 57.
    AARC (1993) In-vitro pH and blood gas analysis and hemoximetry. Respir Care 38:505–510.Google Scholar
  58. 58.
    Severinghaus JW, Kelleher JF (1992) Recent developments in pulse oximetry. Anesthesiology 76:1018–1038.PubMedCrossRefGoogle Scholar
  59. 59.
    Gardner NG (1996) The pathophysiology of hyperventilation disorders. Chest 109:516–534.PubMedCrossRefGoogle Scholar
  60. 60.
    Delclaux B, Orcel B, Housset B, et al. (1994) Arterial blood gases in elderly persons with chronic obstructive pulmonary disease (COPD). Eur Respir J 7:856–861.PubMedGoogle Scholar
  61. 61.
    Forster RE (1987) Diffusion of gases across the alveolar membrane. In Fahri LF, Tenney SM (eds) Handbook of physiology: The respiratory system. Section 3: Gas exchange. American Physiological Society, Bethesda, MD, pp 71–88.Google Scholar
  62. 62.
    Cotes JE, Chinn DJ, Quanjer PH, et al. (1993) Standardization of the measurement of transfer factor (diffusing capacity). Eur Respir J 6 (suppl. 16):41–52.Google Scholar
  63. 63.
    Yernault JC, Paiva M (1986) In vivo diagnosis of pulmonary emphysema: An uncompletely resolved issue. Bull Eur Physiopathol Respir 22:95–97.PubMedGoogle Scholar
  64. 64.
    AARC (1992) Clinical practice guideline: Exercise testing for evaluation of hypoxemia and/or desaturation. Respir Care 37:907–912.Google Scholar
  65. 65.
    Hansen JE (1984) Exercise instruments, schemes, and protocols for evaluating the dyspneic patient. Am Rev Respir Dis 129(Suppl):S25–S27.PubMedGoogle Scholar
  66. 66.
    Wasserman K (1984) The anaerobic threshold measurement in exercise testing. Clin Chest Med 5:77–88.PubMedGoogle Scholar
  67. 67.
    ACCP/AACVPR (1997) Pulmonary rehabilitation. Joint ACCP/-AACVPR evidence-based guidelines. Chest 112:1363–1396.CrossRefGoogle Scholar
  68. 68.
    Straus C, Zelter M (2000) Sémiologie Fonctionnelle. In Huchon G (ed) Pneumologie pour le practicien. Masson, Paris, in press.Google Scholar

Copyright information

© Springer-Verlag London Limited 2001

Authors and Affiliations

  • C. Straus
  • J. Similowski
  • J.-P. Derenne
  • M. Zelter

There are no affiliations available

Personalised recommendations