Optimal Positioning of Clamps for Workpiece Adjustment Using Multi-objective Evolutionary Computation

  • T. E. Koch
  • F. Schneider
  • A. Zell
Conference paper


This paper presents a case study for the application of evolutionary techniques to a geometric optimisation problem in the woodworking industry: In order to be able to automatically process wood sheets, they must first be fixed in place on a processing table using clamps. The task is the optimal positioning of these clamps in limited and real time. First the problem is explained, then the reduction to an applicable model is shown on which we show different approaches with Genetic Algorithms, Evolution Strategies, Co-Evolution and Multi-objective Evolutionary Algorithms. We conclude with the results of experiments and the discussion of those. In real use the implemented software improves automation, saves working hours, reduces losses of production and prevents accidents at work.


Genetic Algorithm Evolutionary Algorithm Optimal Position Final Shape Evolution Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bäck, T. (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press, New YorkMATHGoogle Scholar
  2. [2]
    Coello Coello, C.A. (1999) A Comprehensive Survey of Evolutionary-based Multi-objective Optimisation Techniques. Knowledge and Information Systems. l(3): 269 – 308Google Scholar
  3. [3]
    Deb, K. (2001) Multi-Objective Optimisation using Evolutionary Algorithms. Wiley, ChichesterGoogle Scholar
  4. [4]
    Foley, J.D. (1995) Computer Graphics Principles and Practice, 2nd Ed. Addison-WesleyGoogle Scholar
  5. [5]
    Goldberg, D. (1989) Genetic Algorithms in Search, Optimisation and Machine Learning. Addison-WesleyGoogle Scholar
  6. [6]
    Knowles, J.D., Corne, D.W. (2000) Approximating the Non-dominated Front using the Pareto Archived Evolution Strategy. Evolutionary Computation Journal 8 (2): 149 – 172CrossRefGoogle Scholar
  7. [7]
    Koch, T.E., Wakunda, J., Scheer, V., Zell, A. (2000) A Parallel, Hybrid Meta Optimisation for Finding Better Parameters of an Evolution Strategy in Real World Optimisation Problems. Proceedings of GECCO 2000 Workshop Program: 17–19. Las VegasGoogle Scholar
  8. [8]
    Koch, T.E., Müller, R., Schneider, F., Zell, A. (1999) Positionierung von Spannmitteln zur Werkstückfixierung mittels Evolutionärer Algorithmen. Automatisierungstechnische Praxis atp, 9: 32 – 39Google Scholar
  9. [9]
    Michalewicz, Z. (1996) Applications of Evolutionary Algorithms for Constrained Problems. Proceedings of PPSN IV:245–254, Springer, Berlin.Google Scholar
  10. [10]
    Paredis, J. (1994) Co-Evolutionary Constraint Satisfaction. Proceedings of PPSN 111:46–55, Springer, BerlinGoogle Scholar
  11. [11]
    Rechenberg, I. (1994) Evolutionsstrategie, Volume 1 von Werkstatt Bionik und Evolutionstechnik. Frommann-Holzboog, Stuttgart.Google Scholar
  12. [12]
    Wakunda, J. (2001) Parallele Evolutionsstrategien mit der Optimierungsumgebung EvA. Dissertation, University of TübingenGoogle Scholar
  13. [13]
    Wakunda, J., Zell A. (1997) EvA - A Tool for Optimisation with Evolutionary Algorithms. Proceedings of 23rd EUROMICRO, BudapestGoogle Scholar
  14. [14]
    Zitzler, E. (1999) Evolutionary Algorithms for Multi-Objective Optimisation. Ph.D. Dissertation, Zürich, Switzerland: ETH (dissertation No. 13398 )Google Scholar

Copyright information

© Springer-Verlag London Limited 2002

Authors and Affiliations

  • T. E. Koch
    • 1
  • F. Schneider
    • 2
  • A. Zell
    • 1
  1. 1.University of Tübingen, Computer Science DepartmentTübingenGermany
  2. 2.Homag Holzbearbeitungssysteme AGSchopflochGermany

Personalised recommendations