On the Uniformity of Distribution of Congruential Generators over Elliptic Curves

  • Edwin El Mahassni
  • Igor Shparlinski
Part of the Discrete Mathematics and Theoretical Computer Science book series (DISCMATH)


We show that the elliptic curve analogue of the linear congruential generator produces uniformly distributed sequences. The proof is based on a recent estimate of D. Kohel and I. E. Shpaxlinski of character sums over points of elliptic curves.


Elliptic Curve Elliptic Curf Pseudorandom Number Elliptic Curve Cryptography Discrete Logarithm Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Blake, G Seroussi, and N Smart, Elliptic Curves in Cryptography, London Mathematical Society, Lecture Notes Series, 265, Cambridge University Press, 1999.Google Scholar
  2. 2.
    D. Boneh, A. Joux and P. Q. Nguyen, ‘Why textbook ElGamal and RSA encryption are insecure’, Lect. Notes in Comp. Sei, Springer-Verlag, Berlin, 1976 (2000), 30–43.Google Scholar
  3. 3.
    D. Boneh and I. E. Shparlinski, ‘On the unpredictability of bits of the elliptic curve Diffie-Hellman scheme’, Proc. Crypto’2001, Springer-Verlag, Berlin, 2001 (to appear).Google Scholar
  4. 4.
    M. Drmota and R. Tichy, Sequences, discrepancies and applications, Springer-Verlag, Berlin, 1997.MATHGoogle Scholar
  5. 5.
    R. Fischlin and C. P. Schnorr, ‘Stronger security proofs for RSA and Rabin bits’, J. Cryptology 13 (2000), 221–244.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    A. M. Frieze, J. Hástad, R. Kannan, J. C. Lagarias and A. Shamir, ‘Reconstructing truncated integer variables satisfying linear congruence’, SIAM J. Comp, 17 (1988), 262–280.MATHCrossRefGoogle Scholar
  7. 7.
    R. Gallant, R. Lambert and S. Vanstone, ‘Improving the parallelized Pollard lambda search on anomalous binary curves’, Math. Comp, 69 (2000), 1699–1705.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    G. Gong, T. A. Berwson and D. A. Stinson, ‘Elliptic curve pseudorandom sequence generators’, Lect. Notes in Comp. Sei, Springer-Verlag, Berlin, 1758 (2000), 34–49.Google Scholar
  9. 9.
    M. I. González Vasco and M. Näslund, ‘A survey of hard core functions’, Proc. Workshop on Cryptography and Computational Number Theory, Singapore 1999, Birkhäuser, 2001, 227–256.Google Scholar
  10. 10.
    S. Hallgren, ‘Linear congruential generators over elliptic curves’, Preprint CS- 94–143, Dept. of Comp. Sei, Cornegie Mellon Univ, 1994, 1–10.Google Scholar
  11. 11.
    J. Håstad and M. Näslund, ‘The security of individual RSA bits’, Proc 39th IEEE Symp. on Foundations of Comp. Sei, 1998, 510–519.Google Scholar
  12. 12.
    A. Joux and J. Stern, ‘Lattice reduction: A toolbox for the cryptanalyst’, J. Cryptology 11 (1998), 161–185.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    H. Krawczyk, ‘How to predict congruential generators’, J. Algorithms, 13 (1992), 527–545.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    S. V. Konyagin and I. Shparlinski, Character sums with exponential functions and their applications, Cambridge Univ. Press, Cambridge, 1999.MATHCrossRefGoogle Scholar
  15. 15.
    D. R. Kohel and I. E. Shparlinski, ‘Exponential sums and group generators for elliptic curves over finite fields’, Lect. Notes in Comp. Sci, Springer-Verlag, Berlin, 1838 (2000), 395–404.Google Scholar
  16. 16.
    J. C. Lagarias, ‘Pseudorandom number generators in cryptography and number theory’, Proc. Symp. in Appl. Math., Amer. Math. Soc, Providence, RI, 42 (1990), 115–143.MathSciNetGoogle Scholar
  17. 17.
    F. Lindholm, Evaluation and Implementation of Secure Electronic Voting, MSc Thesis, TRITA-NA-E0107, Stockholm University, 2001.Google Scholar
  18. 18.
    H. Niederreiter, ‘Quasi-Monte Carlo methods and pseudo-random numbers’, Bull. Amer. Math. Soc, 84 (1978), 957–1041.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    H. Niederreiter, Random number generation and quasi-Monte Carlo methods, SIAM, Philadelphia, 1992.MATHCrossRefGoogle Scholar
  20. 20.
    I E Shparlinski, ‘On the Naor-Reingold pseudo-random number function from elliptic curves’, Appl Algebra in Engin., Commun. and Computing, 11 (2000), 27–34.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    I. E. Shparlinski and J. H. Silverman, ‘On the linear complexity of the Naor- Reingold pseudo-random function from elliptic curves’, Designs, Codes and Cryprography (to appear).Google Scholar
  22. 22.
    J. H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, Berlin, 1995.Google Scholar
  23. 23.
    N. Smart, ‘A note on the x-coordinate of points on an elliptic curve in characteristic two’, Inform. Proce. Letters (to appear).Google Scholar
  24. 24.
    M. Wiener and R. Zuccherato, ‘Faster attacks on elliptic curve cryptosystems’, Lect. Notes in Comp. Sci, Springer-Verlag, Berlin, 1556 (1999), 190–200.Google Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • Edwin El Mahassni
    • 1
  • Igor Shparlinski
    • 1
  1. 1.Department of ComputingMacquarie UniversityAustralia

Personalised recommendations