Renal Handling of Phosphate

  • E. Takeda
  • K. Morita
  • Y. Taketani
  • H. Yamamoto
  • K. Miyamoto


Dietary phosphorus is converted in the body to phosphates, in which form it exerts its widespread physiological functions, as an essential component of phospholipids, ATP, DNA, phosphorylated proteins, metabolic intermediates, body buffers, and bone. Phosphate homeostasis is dependent on the interaction of three organ systems — the gastrointestinal tract, the bone, and the kidneys — through the coordinated functions primarily of two hormones; parathyroid hormone (PTH) and vitamin D. Under conditions of low dietary phosphate intake, the intestine increases its absorptive efficiency to maximise phosphate absorption and the kidney increases renal phosphate transport to minimise urinary phosphate losses. The ability of the kidney to respond to acute increases or decreases in the filtered load of phosphate by altering excretion is well described. More intriguing is the intrinsic ability of the renal tubule cell to respond to alterations in body phosphate balance as a result of dietary availability or metabolic need.


Proximal Tubule Phosphate Transport Renal Handling Renal Phosphate Phosphate Homeostasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drezner MK. Clinical disorders of phosphate homeostasis. In: Feldman D, Glorieux, Pike JW, editors. Vitamin D. San Diego: Academic Press, 1997;733–53.Google Scholar
  2. 2.
    Bover J, Rodriquez M, Trinidad P, Jara A, Machado L, Liach F, etal. Factors in the development of secondary hyperparathyroidism during graded renal failure in the rat. Kidney Int 1994;41: 953–61.CrossRefGoogle Scholar
  3. 3.
    Silver J, Russell J, Sherwood LM. Regulation by vitamin D metabolism of messenger ribonucleic acid for preproparathyroid hormone in isolated bovine parathyroid hormone in isolated bovine parathyroid cells. Proc Natl Acad Sci USA 1985; 84:1349–55.Google Scholar
  4. 4.
    Almaden Y, Canelejo A, Hernandez A, Ballesteros E, Garcia Navarro S, etal. Direct effect of phosphorus on PTH secretion from rat parathyroid glands in vitro. J Bone Miner Res 1996;11:970–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Bijvoet OLM. Relation of plasma phosphate concentration to renal tubular reabsorption of phosphate. Clin Sci 1969;37:23–36.PubMedGoogle Scholar
  6. 6.
    Hoffman N, Thees M, Kinne F. Phosphate transport by isolated renal brush border vesicles. Pflugers Arch 1976;362:147–56.CrossRefGoogle Scholar
  7. 7.
    Suki WN, Lederer ED, Rouse D. Renal transport of calcium, magnesium, and phosphate. In: Brenner BM, editor. The Kidney. Philadelphia: WB Saunders Company, 2000;520–74.Google Scholar
  8. 8.
    Biber J, Custer M, Magagnin S, Hayes G, Werner A, Lotscher M, etal. Renal Na/Pi-cotransporters. Kidney Int 1996;49:981–5.CrossRefGoogle Scholar
  9. 9.
    Murer H, Biber J. A molecular view of proximal tubular inorganic phosphate (Pi) reabsorption and its regulation. Pflugers Arch 1997;433:379–89.PubMedCrossRefGoogle Scholar
  10. 10.
    Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retroviruses are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci USA 1994;91:7071–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Caverzasio J, Bonjour JP, Fleisch H. Tubular handling of Pi in young growing and adult rats. Am J Physiol 1982;242:F705–10.PubMedGoogle Scholar
  12. 12.
    Kavanaugh MP, Kabat D. Identification and characterization of a widely expressed phosphate trans- porter/retrovirus receptor family Kidney Int 1996;49:959–63.Google Scholar
  13. 13.
    Busch AE, Biber J, Murer H, Lang F. Electrophysiological insights of type I and II Na/Pi transporters. Kidney Int 1996;49:986–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Yabuuchi H, Tanai I, Morita K, Kouda T, Miyamorto K, Takeda E, et al. Hepatic sinusoidal membrane transport of anionic drugs mediated by anion transporter Npt 1. J Pharmacol Exp Ther 1998; 268:1391–6.Google Scholar
  15. 15.
    Li H, Ren P, Onwochei M, Ruch RJ, Xie Z. Regulation of rat Na+/Pi cotransporter-1 gene expression: the roles of glucose and insulin. Am J Physiol 1996;271:EI021–8. Google Scholar
  16. 16.
    Miyamorto K, Tatsumi S, Sonoda T, Yamamoto H, Minami H, Taketani Y, etal. Cloning and functional expression of a Na+-dependent phosphate cotransporter from human kidney cDNA cloning and func¬tional expression. Biochem J 1995;305:81–5. Google Scholar
  17. 17.
    Miyamorto K, Segawa H, Morita K, Nii T, Tatsumi S, Taketani Y, etal. Relative contributions of Na+- dependent phosphate co-transporters to phosphate transport in mouse kidney: RNase H-mediated hybrid depletion analysis. Biochem J 1997;327:735–9.Google Scholar
  18. 18.
    Murer H, Markovich D, Biber J. Renal and small intestinal sodium-dependent tranporters of phosphate and sulphate. J Exp Biol 1994;196:167–81.PubMedGoogle Scholar
  19. 19.
    Takeda E, Taketani Y, Morita K, Tatsumi S, Katai K, Nii T, etal. Molecular mechanisms of mammalian inorganic phosphate homeostasis. Advan Enzyme Regul 2000;40:285–302.CrossRefGoogle Scholar
  20. 20.
    Katai K, Segawa H, Haga H, Morita K, Arai H, S. Tatsumi S, etal. Acute regulation by dietary phos-phate of the sodium-dependent phosphate transporter (NaPi-2) in rat kidney. J Biochem 1997; 121:50–5. PubMedGoogle Scholar
  21. 21.
    Taketani Y, Miyamorto K, Tanaka K, Chikamori M, Tatsumi S, Segawa H, etal. Gene structure and functional analysis of the human Na+/phosphate co-transporter (NaPi-3). Biochem J 1997;324:927–34.PubMedGoogle Scholar
  22. 22.
    Taketani Y, Segawa H, Chikamori M, Morita K, Tanaka K, Kido S, etal. Regulation of type 11 renal Na+-dependent inorganic phosphate transporters by 1,25-dihydroxyvitamin D3. J Biol Chem 1998;273:14575–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Loghman-Adham M. Adaptation to changes in dietary phosphorus intake in health and in renal failure. J Lab Clin Med 1997;129:176–88.PubMedCrossRefGoogle Scholar
  24. 24.
    Takahashi F, Morita K, Katai K, Segawa H, Fujioka A, Kouda T, etal. Effects of dietary inorganic phosphate on the renal Na+-dependent inorganic-phosphate transporter NaPi-2 in thyroparathyroidectomized rats. Biochem J 1998;333:175–81.PubMedGoogle Scholar
  25. 25.
    Reshkin SJ, Forgo J, Biber J, Murer H. Functional asymmetry of phosphate transport and its regulation in opossum kidney cells: Phosphate “adaptation”. Pflugers Arch 1991;419:256–62.PubMedCrossRefGoogle Scholar
  26. 26.
    Saxena S, Allon M. The role of cytosolic calcium in chronic adaptation to phosphate depletion in opossum kidney cells. J Biol Chem 1996;271:3902–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Kido S, Miyamorto K, Mizobuchi H, Taketani Y, Ohokido I, Ogawa N, et al. Identification of regulatory sequences and binding proteins in the type II sodium/phosphate cotransporter NPT2 gene responsive to dietary phosphate. J Biol Chem 1999;274:28256–63.PubMedCrossRefGoogle Scholar
  28. 28.
    Moz Y, Silver J, Naveh-Many T. Protein-RNA interactions determine the stability of the renal NaPi-2 cotransporter mRNA and its translatiion in hypophosphatemic rats. J Biol Chem 1999;274:25266–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Kempson SA, Lotscher M, Kaissling B, Biber J, Murer H, Levi M. Parathyroid hormone action on phosphate transporter mRNA and protein in rat renal proximal tubules. Am J Physiol 1995;268: F784–91.PubMedGoogle Scholar
  30. 30.
    Kempson SA, Latscher M, Kaissling B, Biber J, Murer H, Levi M. Parathyroid hormone action on phosphate transporter mRNA and protein in rat renal proximal tubules. Am J Physiol 1995;268:F784–91.PubMedGoogle Scholar
  31. 31.
    Paraiso MS, McAteer JA, Kempson SA. Parathyroid hormone inhibits plasma membrane Pi transport without changing endocytic activity in opossum kidney cells. Biochim Biophys Acta 1995;1266:143–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Lederer ED, Sohi SS, Mathiesen JM, Klein JB. Regulation of expression of type II sodium-phosphate cotransporters by protein kinases A and C. Am J Physiol 1998;275:F270–7.PubMedGoogle Scholar
  33. 33.
    Le Goas F, Amiel C, Friedlander G. Protein kinase C modulates cAMP content in proximal tubular cells: Role of phosphodiesterase inhibition. Am J Physiol 1991;261:F587–92.PubMedGoogle Scholar
  34. 34.
    Siegfried G, Vrtovsnik F, Prie D, Amiel C, Friedlander G. Parathyroid hormone stimulates ecto- 5′ -nucleotidase activity in renal epithelial cells: Role of protein kinase C. Endocrinology 1995; 136:1267–75.PubMedCrossRefGoogle Scholar
  35. 35.
    Carney SL. Calcitonin and human renal calcium and electrolyte transport. Miner Electrolyte Metab 1997;23:43–7.PubMedGoogle Scholar
  36. 36.
    Yusufi AN, Szczepanska-Konkel M, Hoppe A, Dousa TP. Different mechanisms of adaptive increase in Na-Pi cotransport across renal brush-border membrane. Am J Physiol 1989;256:F852–61.PubMedGoogle Scholar
  37. 37.
    Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 1998;95:5372–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Drezner MK, Lyles KW, Haussler MR, Harrelson JM. Evaluation of a role for 1α,25-dihydroxyvitamin D3 in the pathogenesis and treatment of X-linked hypophosphatemic rickets and osteomalacia. J Clin Invest 1980;66:1020–32.PubMedCrossRefGoogle Scholar
  39. 39.
    Tenenhouse HS, Beck L. Renal Na+-phosphate cotransporter gene expression in X-linked Hyp and Gy mice. Kidney Int 1996;49:1027–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Morita K, Fujioka A, Haga H, Nii T, Segawa H, Kouda T, etal. Dietary regulation of renal phosphate transporters in hypophosphatemic mice. J Bone Miner Metab 1998;16:234–40.CrossRefGoogle Scholar
  41. 41.
    The HYP Consortium. Positional cloning of PEX: A gene with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nature Genet 1995;11:130–6.CrossRefGoogle Scholar
  42. 42.
    Grieff M, Mumm S, Waeltz P, Mazzarella R, Whyie MP, Thakker RV, et al. Expression and cloning of the human X-linked hypophosphatemia gene cDNA. Biochem Biophys Res Commun 1997;231:635–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Nesbitt T, Econs ML, Byun JK, Martel J, Tenenhouse HS, Drezner MK. Phosphate transport in immortalized cell cultures from the renal proximal tubules of normal and Hyp mice: evidence that the HYP gene locus product is an extrarenal factor. J Bone Miner Res 1995;10:1827–83.Google Scholar
  44. 44.
    Rowe PS. The PEX gene: its role in X-linked rickets, osteomalacia, and bone mineral metabolism. Exp Nephrol 1997;5:355–63.PubMedGoogle Scholar
  45. 45.
    Cai Q, Hodsgon SF, Kao PC, Lennon VA, Klee GG, Zinsmiester AR, et al. Inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia. N Engl J Med 1994;330:1645–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Kumar R, Haugen JD, Wieben ED, Londowski JM. Inhibitors of renal epithelial phosphate transport in tumor-induced osteomalacia and uremia. Proc Assoc Am Physicians 1995;107:296–305.PubMedGoogle Scholar
  47. 47.
    Wagner GF, Vozzolo BL, Jaworski EM, Haddad M, Kline RL, Olsen HS, etal. Human stanniocalcin inhibits renal phosphate excretion in the rat. J Bone Miren Res 1997;12:165–71.CrossRefGoogle Scholar
  48. 48.
    Ishibashi K, Miyamoto K, Taketani Y, Morita K, Takeda E, Sasaki S, etal. Molecular cloning of a second human stanniocalcin homologue (STC2). Biochem Biophys Res Commun 1998;250:252–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Rowe PS, de Zoysa PA, Dong R, Wang HR, White KE, Econs MJ, etal. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics 2000;67:54–68.PubMedCrossRefGoogle Scholar
  50. 50.
    Brown TA, Petersen DN, Tkalcevic GT, Vail AL, Rivera-Gonzalez R. Identification of “osteoregulin”, a bone-specific cDNA encoding an RGD-containing protein that is highly expressed in osteoblasts and osteocytes. J Bone Miner Res 2000; 15:S 184. Google Scholar
  51. 51.
    ADHR Consortium. Autosomal dominant hypophosphatemic rickets is associated with mutations in FGF23. Nat Genet 2000;26:345–8. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2002

Authors and Affiliations

  • E. Takeda
  • K. Morita
  • Y. Taketani
  • H. Yamamoto
  • K. Miyamoto

There are no affiliations available

Personalised recommendations