Skip to main content

Intestinal Absorption of Phosphate

  • Chapter
Calcium in Internal Medicine

Abstract

Phosphate homeostasis in humans is controlled by the balance between dietary intake, intestinal absorption, bone deposition/resorption, and renal excretion. This control is partly achieved by interacting endocrine regulatory loops that mainly involves parathyroid hormone (PTH) and vitamin D in the form of the biologically most active compound 1,25(OH)2D3. Phosphate homeostasis is primarily adjusted to provide sufficient amounts of inorganic phosphate (Pi) to a variety of body compartments ranging from the bone skeleton to cells in soft tissues. Pi is especially indispensable for both bone formation and cellular metabolism [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Loghman-Adham M. Adaptation to changes in dietary phosphorus intake in health and renal failure. J Lab Clin Med 1997;129:176–88.

    Article  PubMed  CAS  Google Scholar 

  2. Cross HS, Debiec H, Peterlik M. Mechanism and regulation of intestinal phosphate absorption. Miner Electrolyte Metab 1990;16:115–24.

    PubMed  CAS  Google Scholar 

  3. Kayne LH, D’Argenio DZ, Meyer JH, Hu MS, Jamgotchian N, Lee DBN. Analysis of segmental phosphate absorption in intact rats. A compartmental analysis approach. J Clin Invest 1003;91:915–22.

    Article  Google Scholar 

  4. Loghman-Adham M, Szczepanska-Konkel M, Yusufi ANK, VanScoy M, Dousa TP. Inhibition of Na+-Pi co-transport in small gut brush border by phospho-carboxylic acids. Am J Physiol 252:G244–G249.

    Google Scholar 

  5. Lee DBN, Walling MW, Corry DB. Phosphate transport across rat jejunum: influence of sodium, pH, and 1,25-dihydroxyvitamin D3. Am J Physiol 1986;251:G90–5.

    PubMed  CAS  Google Scholar 

  6. Danisi G, Murer H, Straub RW. Effect of pH on phosphate transport into intestinal brush-border membrane vesicles. Am J Physiol 1984;246:G 180–6.

    CAS  Google Scholar 

  7. Borowitz SM, Ghishan FK. Phosphate transport in human jejunal brush border membrane vesicles. Gastroenterology 1989;96:4–10.

    PubMed  CAS  Google Scholar 

  8. Lemann J, Favus MJ. The intestinal absorption of calcium, magnesium, and phosphate. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Philadelphia: Lippincott Williams & Wilkins, 1999;63–7.

    Google Scholar 

  9. Berner W, Kinne R, Murer H. Phosphate transport into brush border membrane vesicles isolated from rat small intestine. Biochem J 1976;160:467–74.

    PubMed  CAS  Google Scholar 

  10. Ghishan FK, Kikuchi K, Arab N. Phosphate transport by rat intestinal basolateral-membrane vesicles. Biochem J 1987;243:641–6.

    PubMed  CAS  Google Scholar 

  11. Kikuchi K, Ghishan FK. Phosphate transport by basolateral plasma membranes of human small intestine. Gastroenterology 1987;93:106–13.

    PubMed  CAS  Google Scholar 

  12. Nakagawa N, Ghishan FK. Transport of phosphate by plasma membranes of the jejunum and kidney of the mouse model of hypophosphatemic vitamin D-resistant rickets. Proc Soc Exp Biol Med 1993;203:328–35.

    PubMed  CAS  Google Scholar 

  13. Quamme GA. Phosphate transport in intestinal brush border membrane vesicles: effect of pH and dietary phosphate. Am J Physiol 1985;249:G 168–76.

    CAS  Google Scholar 

  14. Shiau Y-F, Fernandez P, Jackson MJ, McMonagle S. Mechanism maintaining a low-pH microclimate in the intestine. Am J Physiol 1985;248:G608–17.

    PubMed  CAS  Google Scholar 

  15. Peerce BE. Simultaneous occlusion of Na+and phosphate by the intestinal brush border membrane Na+/phosphate co-transporter. Kidney Int 1996;49:988–91.

    Article  PubMed  CAS  Google Scholar 

  16. Berner W, Kinne R, Murer H. Phosphate transport into brush-border membrane vesicles isolated from rat small intestine. Biochem J 1076;160:467–74.

    Google Scholar 

  17. Caverzasio J, Danisi G, Straub RW, Murer H, Bonjour JP. Adaptation of phosphate transport to low- phosphate diet in renal and intestinal brush border membrane vesicles: influence of sodium and pH. Pflugers Arch 1987;409:333–6.

    PubMed  CAS  Google Scholar 

  18. Quamme GA. Phosphate transport in intestinal brush border membrane vesicles: effect of pH and dietary phosphate. Am J Physiol 1985;249:G 168–76.

    CAS  Google Scholar 

  19. Danisi G, Murer H, Straub RW. Effect of pH on phosphate transport into intestinal brush border membrane vesicles. Am J Physiol 1984;246:G 180–6.

    CAS  Google Scholar 

  20. Shirazi-Beechey SP, Gorvel JP, Beechey RB. Phosphate transport in intestinal brush border membrane. J Bioenerg Biomembr 1988;20:273–88.

    Article  PubMed  CAS  Google Scholar 

  21. Murer H, Biber J. Molecular mechanisms of renal apical Na phosphate co-transport. Annu Rev Physiol 1996;58:607–18.

    Article  PubMed  CAS  Google Scholar 

  22. Peterlik M, Wasserman RH. Effect of vitamin D on transepithelial phosphate transport in chick intestine. Am J Physiol 1978;234:E379–88.

    PubMed  CAS  Google Scholar 

  23. Peterlik M, Wasserman RH. Regulation by vitamin D of intestinal phosphate absorption. Horm Metab Res 1980;12:216–9.

    Article  PubMed  CAS  Google Scholar 

  24. Schroder B, Hattenhauser O, Breves G. Phosphate transport in pig proximal small intestines during postnatal development. Lack of modulation by calcitriol. Endocrinology 1998;139:1500–7.

    CAS  Google Scholar 

  25. Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997;16:391–6.

    Article  PubMed  CAS  Google Scholar 

  26. Matsumoto T, Fontaine O, Rasmussen H. Effect of 1,25-dihydroxyvitamin D3 on phosphate uptake into chick intestinal brush border membrane vesicles. Biochim Biophys Acta 1980;599:13–23.

    Article  PubMed  CAS  Google Scholar 

  27. Fuchs R, Peterlik M. Vitamin D-induced phosphate transport in intestinal brush border membrane vesicles. Biochem Biophys Res Commun 1980;93:87–92.

    Article  PubMed  CAS  Google Scholar 

  28. Yagci A, Werner A, Murer H, Biber J. Effect of rabbit duodenal mRNA on phosphate transport in Xenopus laevis oocytes: dependence on l,25-dihydroxy-vitamin-D3. Pflugers Arch 1992;422:211–6.

    Article  PubMed  CAS  Google Scholar 

  29. Cross HS, Peterlik M. Calcium and inorganic phosphate transport in embryonic chick intestine: triiodothyronine enhances the genomic action of 1,25-dihydroxycholecalciferol. J Nutr 1988; 118: 1529–34.

    PubMed  CAS  Google Scholar 

  30. Debiec H, Cross HS, Peterlik M. 1,25-Dihydroxycholecalciferol-related Na+/D-glucose transport in brush border membrane vesicles from embryonic chick jejunum. Modulation by triiodothyronine. Eur J Biochem 1991;201:709–13.

    CAS  Google Scholar 

  31. Loghman-Adham M. Adaptation to changes in dietary phosphorus intake in health and in renal failure. J Lab Clin Med 1997;129:176–88.

    Article  PubMed  CAS  Google Scholar 

  32. Danisi G, Caverzasio J, Trechsel U, Bonjour JP, Straub RW. Phosphate transport adaptation in rat jejunum and plasma level of 1,25-dihydroxyvitamin D3. Scand J Gastroenterol 1990;25:210–5.

    PubMed  CAS  Google Scholar 

  33. Caverzasio J, Danisi G, Straub RW, Murer H, Bonjour JP. Adaptation of phosphate transport to low phosphate diet in renal and intestinal brush border membrane vesicles: influence of sodium and pH. Pflugers Arch 1987;409:333–6.

    PubMed  CAS  Google Scholar 

  34. Cramer CF, McMillan J. Phosphorus adaptation in rats in absence of vitamin D or parathyroid glands. Am J Physiol 1980;239:G261–5.

    PubMed  CAS  Google Scholar 

  35. Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H etal. Regulation of intestinal Na+- dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Biochem J 1999;343:705–12.

    Article  PubMed  CAS  Google Scholar 

  36. Norbis F, Boll M, Stange G, Markovich D, Verrey F, Biber J et al. Identification of a cDNA protein leading to an increased Pi-uptake in Xenopus laevis oocytes. J Membr Biol 1997;156:19–24.

    Article  PubMed  CAS  Google Scholar 

  37. Wagner GF, Hampong M, Park CM, Copp DH. Purification, characterization, and bioassay of teleocalcin, a glycoprotein from salmon corpuscles of Stannius. Gen Comp Endocrinol 1986;63:481–91.

    Article  PubMed  CAS  Google Scholar 

  38. Madsen KL, Tavernini MM, Yachimec C, Mendrick DL, Alfonso PJ, Buergin M et al. Stanniocalcin: a novel protein regulating calcium and phosphate transport across mammalian intestine. Am J Physiol 1998;274:G96–102.

    PubMed  CAS  Google Scholar 

  39. Lu M, Wagner GF, Renfro JL. Stanniocalcin stimulates phosphate reabsorption by flounder renal proximal tubule in primary culture. Am J Physiol 1994;267:R1356–62.

    PubMed  CAS  Google Scholar 

  40. Tenenhouse HS. Recent advances in epithelial sodium-coupled phosphate transport. Curr Opin Nephrol Hypertens 1999;8:407–14.

    Article  PubMed  CAS  Google Scholar 

  41. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 1998;95:5372–7.

    Article  PubMed  CAS  Google Scholar 

  42. Kavanaugh MP, Kabat D. Identification and characterization of a widely expressed phosphate transporter/retrovirus receptor family. Kidney Int 1996;49:959–63.

    Article  PubMed  CAS  Google Scholar 

  43. Olah Z, Lehel C, Anderson WB, Eiden MV, Wilson CA. The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter. J Biol Chem 1994;269:25426–31.

    PubMed  CAS  Google Scholar 

  44. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type II sodium-phosphate co-transporter expressed in mammalian small intestine. Proc Natl Acad Sci USA 1998;95:14564–9.

    Article  PubMed  CAS  Google Scholar 

  45. Xu H, Bai L, Collins JF, Ghishan FK. Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na+-Pi) transporter (SLC34A2). Genomics 1999;62:281–4.

    Article  PubMed  CAS  Google Scholar 

  46. Bai L, Collins JF, Ghishan FK. Cloning and characterization of a type III Na-dependent phosphate co-transporter from mouse intestine. Am J Physiol 2000;279:C1135–43.

    CAS  Google Scholar 

  47. Shibui A, Tsunoda T, Seki N, Suzuki Y, Sugane K, Sugano S. Isolation and chromosomal mapping of a novel human gene showing homology to Na+/PO4 co-transporter. J Hum Genet 1999;44:190–2.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London Limited

About this chapter

Cite this chapter

Yamaguchi, T., Sugimoto, T., Chihara, K. (2002). Intestinal Absorption of Phosphate. In: Morii, H., Nishizawa, Y., Massry, S.G. (eds) Calcium in Internal Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-0667-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0667-8_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1173-3

  • Online ISBN: 978-1-4471-0667-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics