Skip to main content

Secondary Osteoporosis

  • Chapter
Book cover Calcium in Internal Medicine

Abstract

Osteoporosis, the most common metabolic bone disease, is by definition a systemic skeletal disease characterised by low bone mass and microarchitectual deterioration of bone tissue, with resultant increase in bone fragility and susceptibility to fracture. While primary osteoporosis is a condition of reduced bone mass appearing in postmenopausal women (postmenopausal osteoporosis) and in elderly individuals (senile osteoporosis), secondary osteoporosis is a condition of reduced bone mass resulting from a variety of specific and well-defined disorders, such as thyrotoxicosis, glucocorticoid use, and immobilisation (Table 9.6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Britto JM, Fenton AJ, Holloway WR, Nicholson GC. Osteoblasts mediate thyroid hormone stimulation of osteoclastic bone resorption. Endocrinology 1992;134:327–31.

    Article  Google Scholar 

  2. Kim CH, Kim HK, Shong YK, Lee KU, Kim GS. Thyroid hormone stimulates basal and interleukin (IL)- 1-induced IL-6 production in human bone marrow stromal cells: a possible mediator of thyroid hormone-induced bone loss. J Endocrinol 1999;160:97–102.

    Article  PubMed  CAS  Google Scholar 

  3. Allain TJ, McGregor AM. Thyroid hormones and bone. J Endocrinol 1993;139:9–18.

    Article  PubMed  CAS  Google Scholar 

  4. Riggs BL, Melton III LJ. Involutional osteoporosis. N Engl J Med 1986;314:1676–86.

    Article  PubMed  CAS  Google Scholar 

  5. Abu EO, Horner A, Teti A, Chatterjee VK, Compston JE. The localization of thyroid hormone receptor mRNA in human bone. Thyroid 2000;10:287–93.

    Article  PubMed  CAS  Google Scholar 

  6. Jódar E, Muñoz-Torres M, Escobar-Jiménez F, Quesada-Charneco M, Luna del Castillo JD. Bone loss in hyperthyroid patients and in former hyperthyroid patients controlled on medical therapy: influence of aetiology and menopause. Clin Endocrinol (Oxf) 1997;47:279–85.

    Article  Google Scholar 

  7. Nagasaka S, Sugimoto H, Nakamura T, Kusaka I, Fujisawa G, Sakuma N etal. Antithyroid therapy improves bony manifestations and bone metabolic markers in patients with Graves’ thyrotoxicosis. Clin Endocrinol (Oxf). 1997;47:215–21.

    Article  CAS  Google Scholar 

  8. Shafer RB, Gregory DH. Calcium malabsorption in hyperthyroidism. Gastroenterology 1972;63:235–9.

    PubMed  CAS  Google Scholar 

  9. Epstein FH, Freedman LR, Levitin H. Hypercalcemia, nephrocalcinosis and reversible renal insufficiency associated with hyperthyroidism. N Engl J Med 1958;259:782–8.

    Article  Google Scholar 

  10. Inaba M, Hamada N, Ito K, Mimura T, Ohno M, Yamakawa J et al. A case report on disequiribrium hypercalcemia in hyperthyroidism. Endocrinol Jpn 1982;29:389–93.

    PubMed  CAS  Google Scholar 

  11. Jódar E, Muñoz-Torres M, Escobar-Jimenez F, Quesada-Charneco M, Luna del Castillo JD. Bone loss in hyperthyroid patients and in former hyperthyroid patients controlled on medical therapy: influence of aetiology and menopause. Clin Endocrinol (Oxf).1997;47:279–85.

    Article  Google Scholar 

  12. Langdahl BL, Loft AGR, Eriksen EF, Mosekilde L, Charles R Bone mass, bone turnover, body composition, and calcium homeostasis in former hyperthyroid patients treated by combined medical therapy. Thyroid 1996;6:161–8.

    PubMed  CAS  Google Scholar 

  13. Muddle AH, Houben AJ, Nieuwenhuijzen, Kruseman AC. Bone metabolism during anti-thyroid drug treatment of endogenous subclinical hyperthyroidism. Clin Endocrinol (Oxf). 1994;41: 421–4.

    Article  Google Scholar 

  14. Kasagi K, Takeuchi R, Misaki T, Kousaka T, Miyamoto S, Iida Y etal. Subclinical Graves’ disease as a cause of subnormal TSH levels in euthyroid subjects. J Endocrinol Invest 1997;20:183–8.

    PubMed  CAS  Google Scholar 

  15. Kumeda Y, Inaba M, Tahara H, Kurioka Y, Ishikawa T, Morii H etal. Persistent increase in bone turnover in Graves’ patients with subclinical hyperthyroidism. J Clin Endocrinol Metab 2000;85:4157–61.

    Article  PubMed  CAS  Google Scholar 

  16. Inoue M, Tawata M, Yokomori N, Endo T, Onaya T. Expression of thyrotropin receptor on clonal osteoblast-like rat osteosarcoma cells. Thyroid 1998;8:1059–64.

    Article  PubMed  CAS  Google Scholar 

  17. Lupoli G, Nuzzo V, Di Carlo C, Affinito P, Vollery M, Vitale G etal. Effects of alendronate on bone loss in pre- and postmenopausal hyperthyroid women treated with methimazole. Gynecol Endocrinol Oct 1996;10(5):343–8.

    Article  CAS  Google Scholar 

  18. Kung AW, Ng F. A rat model of thyroid hormone-induced bone loss: effect of antiresorptive agents on regional bone density and osteocalcin gene expression. Thyroid 1994;4(1):93–8.

    Article  PubMed  CAS  Google Scholar 

  19. Faber J, Galloe AM. Changes in bone mass during prolonged subclinical hyperthyroidism due to L- thyroxine treatment: a meta-analysis. Eur J Endocrinol 1994;130:350–6.

    Article  PubMed  CAS  Google Scholar 

  20. Duncan WE, Chung A, Solomon B, Wartofsky L. Influence of clinical characteristics and parameters associated with thyroid hormone therapy on the bone mineral density of women treated with thyroid hormone. Thyroid 1994;4:183–90.

    Article  PubMed  CAS  Google Scholar 

  21. Reid IR. Glucocorticoid effects on bone. J Clin Endocrinol Metab 1998;83:1860–2.

    Article  PubMed  CAS  Google Scholar 

  22. Lukert BP, Raisz LG. Glucocorticoid-induced osteoporosis: pathogenesis and management. Ann Intern Med 1990;112:352–64.

    PubMed  CAS  Google Scholar 

  23. Adinoff AD, Hollister JR. Steroid-induced fractures and bone loss in patients with asthma. N Engl J Med 1983;309:265–8.

    Article  PubMed  CAS  Google Scholar 

  24. Lukert B, Mador A, Raisz LG, Kream BE. The role of DNA synthesis in the responses of fetal rat calvariae to Cortisol. J Bone Miner Res 1991;6:158–66.

    Google Scholar 

  25. Suzuiki Y, Ichikawa Y, Saito E, Homma M. Importance of increased urinary calcium excretion in the development of secondary hyperparathyroidism of patients under glucocorticoid therapy. Metabolism 1983;32:151–6.

    Article  Google Scholar 

  26. Lukert BP, Stanbury SW, Mawer EB. Vitamin D and intestinal transport of calcium: effects of pred-nisolone. Endocrinology 1973;93:718–22.

    Article  PubMed  CAS  Google Scholar 

  27. Rickers H, Deding A, Christiansen C, Rodbro P, Naestoft J. Coritcosteroid-induced osteopenia and vitamin D metabolism: effect of vitamin D2, calcium, phosphate, and sodium fluoride administration. Clin Endocrinol 1982;16:409–15.

    Article  CAS  Google Scholar 

  28. Gennari C, Imbimbo B, Montaganani M, Bernini M, Nardi P, Avioli LV. Effects of prednisolone and deflazacort on mineral metabolism and parathyroid hormone activity in humans. Calcif Tissue Int 1984;36:245–52.

    Article  PubMed  CAS  Google Scholar 

  29. Pearce G, Tabensky DA, Delmas PD, Baker HW, Seeman E. Corticosteroid-induced bone loss in men. J Clin Endocrinol Metab 1998;83:801–6.

    Article  PubMed  CAS  Google Scholar 

  30. Krossgaard MR etal. Changes in bone mass during low dose coricosteroid treatment in patients with polymyalgia rheumatica: a double blind, prospective comparison between prednisolone and deflazacort. Ann Rheum Dis 1996;55:143–6.

    Article  Google Scholar 

  31. Ringe JD. Active vitamin D metabolites in glucocorticoid-induced osteoporosis. Calcif Tissue Int. 1997;60:124–7.

    Article  PubMed  CAS  Google Scholar 

  32. Papapoulos SE. Bisphosphonates. In: Rosen CJ, Glowacki J, Bilezikian JP, editors. The aging skeleton. San Diego, London: Academic Press, 1999;541–9.

    Chapter  Google Scholar 

  33. Saag KG, Emkey R, Schnitzer TJ, Brown JP, Hawkins F, Goemaere F et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. N Engl J Med 1998;339:292–9.

    Article  PubMed  CAS  Google Scholar 

  34. Deodhar AA, Woolf AD. Bone mass measurement and bone metabolism in rheumatoid arthritis: A review. Br J Rheumatol 1996;35:309–22.

    Article  PubMed  CAS  Google Scholar 

  35. Furumitsu Y, Inaba M, Yukioka K, Yukioka M, Kumeda Y, Azuma Y etal. Levels of serum and synovial fluid pyridinium crosslinks in patients with rheumatoid arthritis. J Rheumatol 2000;27:64–70.

    PubMed  CAS  Google Scholar 

  36. Chu CQ, Field M, Allard S, Abney E, Feldmann M, Maini RN. Detection of cytokines at the cartilage/pannus junction in patients with rheumatoid arthritis; implications for the role of cytokines in cartilage destruction and repair. Br J Rheumatol 1992;32:653–61.

    Article  Google Scholar 

  37. Inaba M, Yukioka K, Furumitsu Y, Murano M, Goto H, Nishizawa Y etal. Positive correlation between levels of IL-1 or IL-2 and l,25(OH)2D/25-OH-D ratio in synovial fluid of patients with rheumatoid arthritis. Life Sci 1997;61:977–85.

    Article  PubMed  CAS  Google Scholar 

  38. Sambrook PN, Reeve J. Bone disease in rheumatoid arthritis. Clin Sci 1988;74:225–30.

    PubMed  CAS  Google Scholar 

  39. Cortet B, Flipo RM, Pigny P, Duquesnoy B, Boersma A, Marchandise X etal. Is bone turnover a determinant of bone mass in rheumatoid arthritis? J Rheumatol 1998;25:1251–3.

    Google Scholar 

  40. Sambrook PN, Spector TD, Seeman E, Bellamy N, Buchanan RR, Duffy DL etal. Osteoporosis in rheumatoid arthritis: A monozygotic co-twin control study. Arthritis Rheum 1995;38:806–9.

    Article  PubMed  CAS  Google Scholar 

  41. Buckley LM, Leib ES, Cartularo KS, Vacek PM, Cooper SM. Effect of low dose methotrexate on the bone mineral density of patients with rheumatoid arthritis. J Rheumatol 1997;24:1489–94.

    PubMed  CAS  Google Scholar 

  42. Schneider LE, Schedl HP. Diabetes and intestinal calcium absorption in the rat. Am J Physiol 1972;223:1319–23.

    PubMed  CAS  Google Scholar 

  43. Leman Jr J, Lennon EJ, Piering WR, Prien Jr EL, Ricinati ES. Evidence that glucose ingestion inhibits net renal tubular reabsorption of calcium and magnesium in man. J Lab Clin Med 1970;75:578–85.

    Google Scholar 

  44. Imura H, Seino Y, Nakagawa S, Goto Y, Kosaka K, Sakamoto N etal. Diabetic osteopenia in Japanese: a geographic study. J Jpn Diabetes Soc 1987;30:9924–9.

    Google Scholar 

  45. Klein M, Frost HM. The numbers of bone resortpion and formation in rib. Henry Ford Hos Med Bull 1964;12:527–36.

    Google Scholar 

  46. Rico H, Hernandez ER, Cabranes JA, Gomez-Castresana F. Suggestion of a deficient osteoblastic function in diabetes mellitus: the possible cause of osteopenia in diabetics. Calcif Tis Int 1989;45:71–3.

    Article  CAS  Google Scholar 

  47. Ishida H, Seino Y, Taminato T, Usami M, Takeshita N, Seino Y etal. Circulating levels and bone contents of bone γ-carboxyglutamic acid-containing protein are decreased in streptozotocin-induced diabetes: possible marker of diabetic osteopenia. Diabetes 1988;37:702–6.

    Article  PubMed  CAS  Google Scholar 

  48. Wettenhall REH, Schwqarz PL, Bornstein J. Actions of insulin and growth hormone on collagen and chondroitin sulfate synthesis in bone organ cultures. Diabetes 1969;18:280–4.

    PubMed  CAS  Google Scholar 

  49. Inaba M, Terada M, Koyama H, Yoshida O, Ishimura E, Kawagishi T etal. Influence of high glucose on 1,25-dihydroxyvitamin D3-induced effect on human osteoblast-like MG-63 cells J Bone Miner Res 1995;10:1050–60.

    CAS  Google Scholar 

  50. Terada M, Inaba M, Yano Y, Hasuma T, Nishizawa Y, Morii H etal. Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone 1998;22:17–23.

    Article  PubMed  CAS  Google Scholar 

  51. Inaba M, Terada M, Nishizawa Y, Shioi A, Ishimura E, Otani S etal. Protective effect of an aldose reductase inhibitor against bone loss in galactose-fed rats: possible involvement of the polyol pathway in bone metabolism. Metabolism 1999;48:904–9.

    Article  PubMed  CAS  Google Scholar 

  52. Inaba M, Nishizawa Y, Mita K, Kumeda Y, Emoto M, Kawagishi T etal. Poor glycemic control impairs the response of biochemical parameters of bone formation and resorption to exogenous 1,25- dihydroxyvitamin D3 in patients with type 2 diabetes. Osteoporos Int 1999;9:525–31.

    Article  PubMed  CAS  Google Scholar 

  53. Inaba M, Nishizawa Y, Shioi A, Morii H. Importance of sustained high glucose condition in the development of diabetic osteopenia: Possible involvement of the polyol pathway. Osteoporosis Int 1997;7(suppl. 3):S209–12.

    Article  Google Scholar 

  54. Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM. Bone loss and bone turnover in diabetes. Diabetes 1995;44(7):775–82.

    Article  PubMed  CAS  Google Scholar 

  55. Scwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ etal. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 2001;86:32–8.

    Article  Google Scholar 

  56. Chung YS, Lee MD, Lee SK, Kim HM, Fitzpatrick LA. HMG-CoA reductase inhibitors increase BMD in type 2 diabetes mellitus patients. J Clin Endocrinol Metab. 2000;85:1137–42.

    Article  PubMed  CAS  Google Scholar 

  57. Wada Y, Nakamura Y, Koshiyama H. Lack of positive correlation between statin use and bone mineral density in Japanese subjects with type 2 diabetes. Arch Intern Med 2000; 160:2865.

    Article  PubMed  CAS  Google Scholar 

  58. Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporosis and the bone mass effects of mechanical and non-mechanical agents. Bone Miner 1987;2:73–85.

    PubMed  CAS  Google Scholar 

  59. Carter DR. Mechanical loading history and skeletal biology. J Biomech 1987;20:1095–9.

    Article  PubMed  CAS  Google Scholar 

  60. Krolner B, Toft B. Vertebral bone loss: an unheeded side effect of therapeutic bed rest. Clin Sci 1983;64:537–40.

    PubMed  CAS  Google Scholar 

  61. Minaire P, Neunier P, Edouard C, Bernard J, Courpron P, Bourret J. Quantitative histological data on disuse osteoporosis. Calcif Tissue Int 1974;17:57–73.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London Limited

About this chapter

Cite this chapter

Inaba, M., Ishimura, E. (2002). Secondary Osteoporosis. In: Morii, H., Nishizawa, Y., Massry, S.G. (eds) Calcium in Internal Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-0667-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0667-8_18

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1173-3

  • Online ISBN: 978-1-4471-0667-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics