Secondary Osteoporosis

  • M. Inaba
  • E. Ishimura


Osteoporosis, the most common metabolic bone disease, is by definition a systemic skeletal disease characterised by low bone mass and microarchitectual deterioration of bone tissue, with resultant increase in bone fragility and susceptibility to fracture. While primary osteoporosis is a condition of reduced bone mass appearing in postmenopausal women (postmenopausal osteoporosis) and in elderly individuals (senile osteoporosis), secondary osteoporosis is a condition of reduced bone mass resulting from a variety of specific and well-defined disorders, such as thyrotoxicosis, glucocorticoid use, and immobilisation (Table 9.6).


Bone Mineral Density Bone Loss Bone Turnover Primary Biliary Cirrhosis Secondary Osteoporosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Britto JM, Fenton AJ, Holloway WR, Nicholson GC. Osteoblasts mediate thyroid hormone stimulation of osteoclastic bone resorption. Endocrinology 1992;134:327–31.CrossRefGoogle Scholar
  2. 2.
    Kim CH, Kim HK, Shong YK, Lee KU, Kim GS. Thyroid hormone stimulates basal and interleukin (IL)- 1-induced IL-6 production in human bone marrow stromal cells: a possible mediator of thyroid hormone-induced bone loss. J Endocrinol 1999;160:97–102.PubMedCrossRefGoogle Scholar
  3. 3.
    Allain TJ, McGregor AM. Thyroid hormones and bone. J Endocrinol 1993;139:9–18.PubMedCrossRefGoogle Scholar
  4. 4.
    Riggs BL, Melton III LJ. Involutional osteoporosis. N Engl J Med 1986;314:1676–86.PubMedCrossRefGoogle Scholar
  5. 5.
    Abu EO, Horner A, Teti A, Chatterjee VK, Compston JE. The localization of thyroid hormone receptor mRNA in human bone. Thyroid 2000;10:287–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Jódar E, Muñoz-Torres M, Escobar-Jiménez F, Quesada-Charneco M, Luna del Castillo JD. Bone loss in hyperthyroid patients and in former hyperthyroid patients controlled on medical therapy: influence of aetiology and menopause. Clin Endocrinol (Oxf) 1997;47:279–85. CrossRefGoogle Scholar
  7. 7.
    Nagasaka S, Sugimoto H, Nakamura T, Kusaka I, Fujisawa G, Sakuma N etal. Antithyroid therapy improves bony manifestations and bone metabolic markers in patients with Graves’ thyrotoxicosis. Clin Endocrinol (Oxf). 1997;47:215–21.CrossRefGoogle Scholar
  8. 8.
    Shafer RB, Gregory DH. Calcium malabsorption in hyperthyroidism. Gastroenterology 1972;63:235–9.PubMedGoogle Scholar
  9. 9.
    Epstein FH, Freedman LR, Levitin H. Hypercalcemia, nephrocalcinosis and reversible renal insufficiency associated with hyperthyroidism. N Engl J Med 1958;259:782–8.CrossRefGoogle Scholar
  10. 10.
    Inaba M, Hamada N, Ito K, Mimura T, Ohno M, Yamakawa J et al. A case report on disequiribrium hypercalcemia in hyperthyroidism. Endocrinol Jpn 1982;29:389–93.PubMedGoogle Scholar
  11. 11.
    Jódar E, Muñoz-Torres M, Escobar-Jimenez F, Quesada-Charneco M, Luna del Castillo JD. Bone loss in hyperthyroid patients and in former hyperthyroid patients controlled on medical therapy: influence of aetiology and menopause. Clin Endocrinol (Oxf).1997;47:279–85. CrossRefGoogle Scholar
  12. 12.
    Langdahl BL, Loft AGR, Eriksen EF, Mosekilde L, Charles R Bone mass, bone turnover, body composition, and calcium homeostasis in former hyperthyroid patients treated by combined medical therapy. Thyroid 1996;6:161–8.PubMedGoogle Scholar
  13. 13.
    Muddle AH, Houben AJ, Nieuwenhuijzen, Kruseman AC. Bone metabolism during anti-thyroid drug treatment of endogenous subclinical hyperthyroidism. Clin Endocrinol (Oxf). 1994;41: 421–4. CrossRefGoogle Scholar
  14. 14.
    Kasagi K, Takeuchi R, Misaki T, Kousaka T, Miyamoto S, Iida Y etal. Subclinical Graves’ disease as a cause of subnormal TSH levels in euthyroid subjects. J Endocrinol Invest 1997;20:183–8.PubMedGoogle Scholar
  15. 15.
    Kumeda Y, Inaba M, Tahara H, Kurioka Y, Ishikawa T, Morii H etal. Persistent increase in bone turnover in Graves’ patients with subclinical hyperthyroidism. J Clin Endocrinol Metab 2000;85:4157–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Inoue M, Tawata M, Yokomori N, Endo T, Onaya T. Expression of thyrotropin receptor on clonal osteoblast-like rat osteosarcoma cells. Thyroid 1998;8:1059–64.PubMedCrossRefGoogle Scholar
  17. 17.
    Lupoli G, Nuzzo V, Di Carlo C, Affinito P, Vollery M, Vitale G etal. Effects of alendronate on bone loss in pre- and postmenopausal hyperthyroid women treated with methimazole. Gynecol Endocrinol Oct 1996;10(5):343–8.CrossRefGoogle Scholar
  18. 18.
    Kung AW, Ng F. A rat model of thyroid hormone-induced bone loss: effect of antiresorptive agents on regional bone density and osteocalcin gene expression. Thyroid 1994;4(1):93–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Faber J, Galloe AM. Changes in bone mass during prolonged subclinical hyperthyroidism due to L- thyroxine treatment: a meta-analysis. Eur J Endocrinol 1994;130:350–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Duncan WE, Chung A, Solomon B, Wartofsky L. Influence of clinical characteristics and parameters associated with thyroid hormone therapy on the bone mineral density of women treated with thyroid hormone. Thyroid 1994;4:183–90.PubMedCrossRefGoogle Scholar
  21. 21.
    Reid IR. Glucocorticoid effects on bone. J Clin Endocrinol Metab 1998;83:1860–2.PubMedCrossRefGoogle Scholar
  22. 22.
    Lukert BP, Raisz LG. Glucocorticoid-induced osteoporosis: pathogenesis and management. Ann Intern Med 1990;112:352–64.PubMedGoogle Scholar
  23. 23.
    Adinoff AD, Hollister JR. Steroid-induced fractures and bone loss in patients with asthma. N Engl J Med 1983;309:265–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Lukert B, Mador A, Raisz LG, Kream BE. The role of DNA synthesis in the responses of fetal rat calvariae to Cortisol. J Bone Miner Res 1991;6:158–66.Google Scholar
  25. 25.
    Suzuiki Y, Ichikawa Y, Saito E, Homma M. Importance of increased urinary calcium excretion in the development of secondary hyperparathyroidism of patients under glucocorticoid therapy. Metabolism 1983;32:151–6.CrossRefGoogle Scholar
  26. 26.
    Lukert BP, Stanbury SW, Mawer EB. Vitamin D and intestinal transport of calcium: effects of pred-nisolone. Endocrinology 1973;93:718–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Rickers H, Deding A, Christiansen C, Rodbro P, Naestoft J. Coritcosteroid-induced osteopenia and vitamin D metabolism: effect of vitamin D2, calcium, phosphate, and sodium fluoride administration. Clin Endocrinol 1982;16:409–15.CrossRefGoogle Scholar
  28. 28.
    Gennari C, Imbimbo B, Montaganani M, Bernini M, Nardi P, Avioli LV. Effects of prednisolone and deflazacort on mineral metabolism and parathyroid hormone activity in humans. Calcif Tissue Int 1984;36:245–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Pearce G, Tabensky DA, Delmas PD, Baker HW, Seeman E. Corticosteroid-induced bone loss in men. J Clin Endocrinol Metab 1998;83:801–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Krossgaard MR etal. Changes in bone mass during low dose coricosteroid treatment in patients with polymyalgia rheumatica: a double blind, prospective comparison between prednisolone and deflazacort. Ann Rheum Dis 1996;55:143–6.CrossRefGoogle Scholar
  31. 31.
    Ringe JD. Active vitamin D metabolites in glucocorticoid-induced osteoporosis. Calcif Tissue Int. 1997;60:124–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Papapoulos SE. Bisphosphonates. In: Rosen CJ, Glowacki J, Bilezikian JP, editors. The aging skeleton. San Diego, London: Academic Press, 1999;541–9.CrossRefGoogle Scholar
  33. 33.
    Saag KG, Emkey R, Schnitzer TJ, Brown JP, Hawkins F, Goemaere F et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. N Engl J Med 1998;339:292–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Deodhar AA, Woolf AD. Bone mass measurement and bone metabolism in rheumatoid arthritis: A review. Br J Rheumatol 1996;35:309–22.PubMedCrossRefGoogle Scholar
  35. 35.
    Furumitsu Y, Inaba M, Yukioka K, Yukioka M, Kumeda Y, Azuma Y etal. Levels of serum and synovial fluid pyridinium crosslinks in patients with rheumatoid arthritis. J Rheumatol 2000;27:64–70.PubMedGoogle Scholar
  36. 36.
    Chu CQ, Field M, Allard S, Abney E, Feldmann M, Maini RN. Detection of cytokines at the cartilage/pannus junction in patients with rheumatoid arthritis; implications for the role of cytokines in cartilage destruction and repair. Br J Rheumatol 1992;32:653–61.CrossRefGoogle Scholar
  37. 37.
    Inaba M, Yukioka K, Furumitsu Y, Murano M, Goto H, Nishizawa Y etal. Positive correlation between levels of IL-1 or IL-2 and l,25(OH)2D/25-OH-D ratio in synovial fluid of patients with rheumatoid arthritis. Life Sci 1997;61:977–85.PubMedCrossRefGoogle Scholar
  38. 38.
    Sambrook PN, Reeve J. Bone disease in rheumatoid arthritis. Clin Sci 1988;74:225–30.PubMedGoogle Scholar
  39. 39.
    Cortet B, Flipo RM, Pigny P, Duquesnoy B, Boersma A, Marchandise X etal. Is bone turnover a determinant of bone mass in rheumatoid arthritis? J Rheumatol 1998;25:1251–3.Google Scholar
  40. 40.
    Sambrook PN, Spector TD, Seeman E, Bellamy N, Buchanan RR, Duffy DL etal. Osteoporosis in rheumatoid arthritis: A monozygotic co-twin control study. Arthritis Rheum 1995;38:806–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Buckley LM, Leib ES, Cartularo KS, Vacek PM, Cooper SM. Effect of low dose methotrexate on the bone mineral density of patients with rheumatoid arthritis. J Rheumatol 1997;24:1489–94.PubMedGoogle Scholar
  42. 42.
    Schneider LE, Schedl HP. Diabetes and intestinal calcium absorption in the rat. Am J Physiol 1972;223:1319–23.PubMedGoogle Scholar
  43. 43.
    Leman Jr J, Lennon EJ, Piering WR, Prien Jr EL, Ricinati ES. Evidence that glucose ingestion inhibits net renal tubular reabsorption of calcium and magnesium in man. J Lab Clin Med 1970;75:578–85.Google Scholar
  44. 44.
    Imura H, Seino Y, Nakagawa S, Goto Y, Kosaka K, Sakamoto N etal. Diabetic osteopenia in Japanese: a geographic study. J Jpn Diabetes Soc 1987;30:9924–9.Google Scholar
  45. 45.
    Klein M, Frost HM. The numbers of bone resortpion and formation in rib. Henry Ford Hos Med Bull 1964;12:527–36.Google Scholar
  46. 46.
    Rico H, Hernandez ER, Cabranes JA, Gomez-Castresana F. Suggestion of a deficient osteoblastic function in diabetes mellitus: the possible cause of osteopenia in diabetics. Calcif Tis Int 1989;45:71–3.CrossRefGoogle Scholar
  47. 47.
    Ishida H, Seino Y, Taminato T, Usami M, Takeshita N, Seino Y etal. Circulating levels and bone contents of bone γ-carboxyglutamic acid-containing protein are decreased in streptozotocin-induced diabetes: possible marker of diabetic osteopenia. Diabetes 1988;37:702–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Wettenhall REH, Schwqarz PL, Bornstein J. Actions of insulin and growth hormone on collagen and chondroitin sulfate synthesis in bone organ cultures. Diabetes 1969;18:280–4.PubMedGoogle Scholar
  49. 49.
    Inaba M, Terada M, Koyama H, Yoshida O, Ishimura E, Kawagishi T etal. Influence of high glucose on 1,25-dihydroxyvitamin D3-induced effect on human osteoblast-like MG-63 cells J Bone Miner Res 1995;10:1050–60. Google Scholar
  50. 50.
    Terada M, Inaba M, Yano Y, Hasuma T, Nishizawa Y, Morii H etal. Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone 1998;22:17–23.PubMedCrossRefGoogle Scholar
  51. 51.
    Inaba M, Terada M, Nishizawa Y, Shioi A, Ishimura E, Otani S etal. Protective effect of an aldose reductase inhibitor against bone loss in galactose-fed rats: possible involvement of the polyol pathway in bone metabolism. Metabolism 1999;48:904–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Inaba M, Nishizawa Y, Mita K, Kumeda Y, Emoto M, Kawagishi T etal. Poor glycemic control impairs the response of biochemical parameters of bone formation and resorption to exogenous 1,25- dihydroxyvitamin D3 in patients with type 2 diabetes. Osteoporos Int 1999;9:525–31.PubMedCrossRefGoogle Scholar
  53. 53.
    Inaba M, Nishizawa Y, Shioi A, Morii H. Importance of sustained high glucose condition in the development of diabetic osteopenia: Possible involvement of the polyol pathway. Osteoporosis Int 1997;7(suppl. 3):S209–12.CrossRefGoogle Scholar
  54. 54.
    Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM. Bone loss and bone turnover in diabetes. Diabetes 1995;44(7):775–82.PubMedCrossRefGoogle Scholar
  55. 55.
    Scwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ etal. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 2001;86:32–8.CrossRefGoogle Scholar
  56. 56.
    Chung YS, Lee MD, Lee SK, Kim HM, Fitzpatrick LA. HMG-CoA reductase inhibitors increase BMD in type 2 diabetes mellitus patients. J Clin Endocrinol Metab. 2000;85:1137–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Wada Y, Nakamura Y, Koshiyama H. Lack of positive correlation between statin use and bone mineral density in Japanese subjects with type 2 diabetes. Arch Intern Med 2000; 160:2865.PubMedCrossRefGoogle Scholar
  58. 58.
    Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporosis and the bone mass effects of mechanical and non-mechanical agents. Bone Miner 1987;2:73–85.PubMedGoogle Scholar
  59. 59.
    Carter DR. Mechanical loading history and skeletal biology. J Biomech 1987;20:1095–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Krolner B, Toft B. Vertebral bone loss: an unheeded side effect of therapeutic bed rest. Clin Sci 1983;64:537–40.PubMedGoogle Scholar
  61. 61.
    Minaire P, Neunier P, Edouard C, Bernard J, Courpron P, Bourret J. Quantitative histological data on disuse osteoporosis. Calcif Tissue Int 1974;17:57–73.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2002

Authors and Affiliations

  • M. Inaba
  • E. Ishimura

There are no affiliations available

Personalised recommendations