Skip to main content

Epicurean-style Learning Applied to the Classification of Gene-Expression Data

  • Conference paper
Research and Development in Intelligent Systems XIX

Abstract

We investigate the use of perceptrons for classification of microarray data where we use two datasets that were published in Khan et al., Nature [Medicine], vol. 7, 2001, and Golub et al., Science, vol. 286, 1999. The classification problem studied by Khan et al. is related to the diagnosis of small round blue cell tumours of childhood (SRBCT) which are difficult to classify both clinically and via routine histology. Golub et al. study acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). We used a simulated annealing-based method in learning a system of perceptrons, each obtained by resampling of the training set. Our results are comparable to those of Khan et al. and Golub et al., indicating that there is a role for perceptrons in the classification of tumours based on gene expression data. We also show that it is critical to perform feature selection in this type of models, i.e., we propose a method for identifying genes that might be significant for the particular tumour types. For SRBCTs, zero error on test data has been obtained for only 10 out of 2308 genes; for the ALL/AML problem, our results are competitive to the best results published in the literature, and we obtain 6 genes out of 7129 genes that are used for the classification procedure. Furthermore, we provide evidence that Epicurean-style learning is essential for obtaining the best classification results.

Research partially supported by EPSRC Grant GR/R72938/01 and by the Taplin award from the Harvard/MIT Health Sciences and Technology Division.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.H.L. Aarts. Local Search in Combinatorial Optimization. Wiley & Sons, 1998.

    Google Scholar 

  2. A. Albrecht, M.J. Loomes, K. Steinhofel, and M. Taupitz. A Modified Perceptron Algorithm for Computer-Assisted Diagnosis. In: M. Bramer, A. Preece, and F. Coenen, eds., Research and Development in Intelligent Systems XVII, pp. 199 – 211, BCS Series, Springer-Verlag, 2000.

    Google Scholar 

  3. A. Albrecht and C.K. Wong. Combining the Perceptron Algorithm with Logarithmic Simulated Annealing. Neural Processing Letters, 14 (l): 75 – 83, 2001.

    Article  MATH  Google Scholar 

  4. P. Bartlett. The Sample Complexity of Pattern Classification with Neural Networks: The Size of Weights is more Important than the Size of the Network. IEEE Tansactions on Information Theory, 44 (2): 525 – 536, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  5. J.G. Cleary, L.E. Trigg, G. Holmes, and M.A. Hall. Experiences with a Weighted Decision Tree Learner. In: M Bramer, A Preece, and F Coenen, eds., Research and Development in Intelligent Systems X VII, pp. 35 – 47, BCS Series, Springer-Verlag, 2000.

    Google Scholar 

  6. M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein. Cluster Analysis and Display of Genome-wide Expression Patterns. Proc. Natl. Acad. Sci. USA, 95(25):14863–8, 1998.

    Article  Google Scholar 

  7. T.S. Furey, N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer, and D. Haussler. Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data. Bioinformatics, 16: 906 – 914, 2000.

    Article  Google Scholar 

  8. C.-F. Geyer. Epikur. Junius-Verlag, Hamburg, 2000.

    Google Scholar 

  9. T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science, 286:531–537, 1999.

    Article  Google Scholar 

  10. I. Guyon, J. Weston, St. Barnhill, and V. Vapnik. Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning, 46 (1–3): 389 – 422, 2002.

    Article  MATH  Google Scholar 

  11. B. Hajek. Cooling Schedules for Optimal Annealing. Mathem. of Operations Research, 13:311 – 329, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Helmbold and M.K. Warmuth. On Weak Learning. J. of Computer and System Sciences, 50: 551 – 573, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  13. K.-U. Höffgen, H.-U. Simon, and K.S. van Horn. Robust Trainability of Single Neurons. J. o f Computer System Sciences, 50: 114 – 125, 1995.

    Article  MATH  Google Scholar 

  14. J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C.R. Antonescu, C. Peterson, and P.S. Meltzer. Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Networks. Nature [Medicine], 7 (6): 673 – 679, 2001.

    Article  Google Scholar 

  15. S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi. Optimization by Simulated Annealing. Science, 220:671–680, 1983.

    Article  MathSciNet  Google Scholar 

  16. M.L. Minsky and S.A. Papert. Perceptrons. MIT Press, Cambridge, Mass., 1969.

    MATH  Google Scholar 

  17. N.J. Maughan, F.A. Lewis, and V. Smith. An Introduction to Arrays. J. of Pathology, 195: 3 – 6, 2001.

    Article  Google Scholar 

  18. J. Quackenbush. Computational Analysis of Microarray Data. Nature Reviews [Genetics], 2 (6): 418 – 427, 2001.

    Article  Google Scholar 

  19. F. Rosenblatt. Principles of Neurodynamics. Spartan Books, New York, 1962.

    MATH  Google Scholar 

  20. R.E. Schapire. The Strength of Weak Learnability. Machine Learning, 5 (2): 197 – 227, 1990.

    Google Scholar 

  21. R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods. The Annals of Statistics, 26(5):1651–1686, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  22. V. Vapnik. Statistical Learning Theory, Wiley&Sons, 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag London Limited

About this paper

Cite this paper

Albrecht, A.A., Vinterbo, S.A., Ohno-Machado, L. (2003). Epicurean-style Learning Applied to the Classification of Gene-Expression Data. In: Bramer, M., Preece, A., Coenen, F. (eds) Research and Development in Intelligent Systems XIX. Springer, London. https://doi.org/10.1007/978-1-4471-0651-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0651-7_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-674-5

  • Online ISBN: 978-1-4471-0651-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics