Skip to main content

Genetic Algorithm Hybridized with Ruin and Recreate Procedure: Application to the Quadratic Assignment Problem

  • Conference paper
Research and Development in Intelligent Systems XIX
  • 100 Accesses

Abstract

Genetic algorithms (GAs) are among the widely used in various areas of computer science, including optimization problems. In this paper, we propose a genetic algorithm hybridized with so-called ruin and recreate (R&R) procedure. We have applied this new hybrid strategy to the well-known combinatorial optimization problem, the quadratic assignment problem (QAP). The results obtained from the experiments on different QAP instances show that the proposed algorithm belongs to the best heuristics for the QAP. The power of this algorithm is also demonstrated by the fact that the new best known solutions were found for several QAP instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holland JH. Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, MI, 1975

    Google Scholar 

  2. Falkenauer E, Delchambre A. A genetic algorithm for bin packing and line balancing. Proceedings of the IEEE international conference on robotics and automation (RA92), Nice, France, 1992

    Google Scholar 

  3. Chu PC, Beasley J.E. A genetic algorithm for the generalized assignment problem. Comput Oper Res 1997; 24: 17 – 23

    Article  MathSciNet  MATH  Google Scholar 

  4. Bui TN, Moon BR. Genetic algorithm and graph partitioning. IEEE Trans Comput 1996; 45: 841 – 855

    Article  MathSciNet  MATH  Google Scholar 

  5. Yamada T, Nakano R. A genetic algorithm applicable to large-scale job-shop problems. In: Männer R, Manderick B (eds) Parallel problem solving from nature 2, North-Holland, Amsterdam, 1992, pp 281 – 290

    Google Scholar 

  6. Beasley JE, Chu PC. A genetic algorithm for the set covering problem. Eur J Oper Res 1996; 94: 392 – 404

    Article  MATH  Google Scholar 

  7. Merz P, Freisleben B. Genetic local search for the TSP: new results. Proceedings of the 1997 IEEE international conference on evolutionary computation, 1997, pp 159–164

    Chapter  Google Scholar 

  8. Blanton J (Jr), Wainwright RL. Multiple vehicle routing with time and capacity constraints using genetic algorithms. In: Forrest S (ed) Proceedings of 5th international conference on genetic algorithms, Morgan Kaufmann, San Mateo, CA, 1993

    Google Scholar 

  9. Davis L. Handbook of genetic algorithms, Van Nostrand, New York, 1991

    Google Scholar 

  10. Goldberg DE. Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Reading, MA, 1989

    MATH  Google Scholar 

  11. Mühlenbein H. Genetic algorithms. In: Aarts E, Lenstra JK (eds) Local search in combinatorial optimization, Wiley, Chichester, 1997, pp 137-171

    Google Scholar 

  12. Schrimpf G, Schneider K, Stamm-Wilbrandt H, Dueck V. Record breaking optimization results using the ruin and recreate principle. J Comput Phys 2000; 159: 139 – 171

    Article  MathSciNet  MATH  Google Scholar 

  13. Mladenović N, Hansen P. Variable neighbourhood search. Comput Oper Res 1997; 24: 1097 – 1100

    Article  MathSciNet  MATH  Google Scholar 

  14. Koopmans T, Beckmann M. Assignment problems and the location of economic activities. Econometrica 1957; 25: 53 – 76

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu TC, Kuh ES (ed). VLSI circuit layout: theory and design, IEEE Press, New York, 1985

    Google Scholar 

  16. Dickey JW, Hopkins JW. Campus building arrangement using TOPAZ. Transp Res 1972; 6: 59 – 68

    Article  Google Scholar 

  17. Elshafei AN. Hospital layout as a quadratic assignment problem. Oper Res Q 1977; 28: 167 – 179

    Article  Google Scholar 

  18. Taillard E. Comparison of iterative searches for the quadratic assignment problem. Location Sci 1995; 3: 87 – 105

    Article  MATH  Google Scholar 

  19. Burkard RE, Offermann J. Entwurf von schreibmaschinentastaturen mittels quadratischer zuordnungsprobleme. Z Oper Res 1977; 21: 121 – 132

    Article  Google Scholar 

  20. Burkard RE, Çela E, Pardalos PM, Pitsoulis L. The quadratic assignment problem. In: Du DZ, Pardalos PM (eds) Handbook of combinatorial optimization, Vol.3, Kluwer, 1998, pp 241 – 337

    Google Scholar 

  21. Sahni S, Gonzalez T. P-complete approximation problems. J ACM 1976; 23:555–565

    Article  MathSciNet  MATH  Google Scholar 

  22. Gambardella LM, Taillard E, Dorigo M. Ant colonies for the quadratic assignment problems. J Oper Res Soc 1999; 50: 167 – 176

    MATH  Google Scholar 

  23. Bölte A, Thonemann UW. Optimizing simulated annealing schedules with genetic programming. Eur J Oper Res 1996; 92: 402 – 416

    Article  MATH  Google Scholar 

  24. Taillard E. Robust taboo search for the QAP. Parallel Comput 1991; 17: 443 – 455

    Article  MathSciNet  Google Scholar 

  25. Fleurent C, Ferland JA. Genetic hybrids for the quadratic assignment problem. In: Pardalos PM, Wolkowicz H (eds) Quadratic assignment and related problems. DIMACS series in discrete mathematics and theoretical computer science, Vol. 16, AMS, Providence, 1994, pp 173 – 188

    Google Scholar 

  26. Lim MH, Yuan Y, Omatu S. Efficient genetic algorithms using simple genes exchange local search policy for the quadratic assignment problem. Comput Optim Appl 2000; 15: 249 – 268

    Article  MathSciNet  MATH  Google Scholar 

  27. Merz P, Freisleben B. A genetic local search approach to the quadratic assignment problem. Proceedings of the seventh international conference on genetic algorithms (ICGA’97), Morgan Kaufmann, 1997, pp 465–472

    Google Scholar 

  28. Tate DM, Smith AE. A genetic approach to the quadratic assignment problem. Comput Oper Res 1995; 1: 73 – 83

    Article  Google Scholar 

  29. Burkard RE, Karisch S, Rend] F. QAPLIB — a quadratic assignment problem library. J Glob Optim 1997; 10: 391 – 403

    Article  MATH  Google Scholar 

  30. Taillard E, Gambardella LM. Adaptive memories for the quadratic assignment problem. Tech. report IDSIA-87-97, Lugano, Switzerland, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag London Limited

About this paper

Cite this paper

Misevicius, A. (2003). Genetic Algorithm Hybridized with Ruin and Recreate Procedure: Application to the Quadratic Assignment Problem. In: Bramer, M., Preece, A., Coenen, F. (eds) Research and Development in Intelligent Systems XIX. Springer, London. https://doi.org/10.1007/978-1-4471-0651-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0651-7_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-674-5

  • Online ISBN: 978-1-4471-0651-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics