Mixed-Integer Evolution Strategy for Chemical Plant Optimization with Simulators

  • Michael Emmerich
  • Monika Grötzner
  • Bernd Groß
  • Martin Schütz


The optimization of chemical engineering plants is still a challenging task. Economical evaluations of a process flowsheet using rigorous simulation models are very time consuming. Furthermore, many different types of parameters can be involved into the optimization procedure, resulting in highly restricted mixed-integer nonlinear objective functions.

Evolution Strategies (ES) are a promising robust and flexible optimization technique for such problems. Motivated by a typical chemical process optimization problem, in this paper a non standard ES is presented, which deals with nominal discrete, metric integer and metric continuous parameters taken from limited domains. Genetic operators from literature are combined and adapted.

Experimental results on test functions and an application example — the parameter optimization of a HDA process — show the robust convergence behaviour of the algorithm even for small population sizes.


Mutation Operator Distillation Column Integer Parameter Evolution Strategy Offspring Individual 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.M. Douglas. Conceptual Design of Chemical Processes. MacGraw Hill, Boston, MA, 1988.Google Scholar
  2. [2]
    M. Emmerich. Optimierung verfahrenstechnischer Prozeßstrukturen mit Evolutionären Algorithmen. Technical report, Department of Computer Science, University of Dortmund, 1999.Google Scholar
  3. [3]
    B. Groß. Gesamtoptimierung verfahrenstechnischer Systeme mit Evolutionären Algorithmen, volume 608 of 3. VDI-Verlag, Düsseldorf, 1999.Google Scholar
  4. [4]
    B. Groß and P. Roosen. Total Process Optimization in Chemical Engineering with Evolutionary Algorithms. In Comp. Chem, Engng. Suppl. ESCAPE 8, Vol 22, pages 229–236, 1998.Google Scholar
  5. [5]
    R. Olschewski. Evolutionäre Algorithmen für gemischt-gannzzahlige Optimierungsprobleme. Diploma thesis, University of Dortmund, Germany, 1999.Google Scholar
  6. [6]
    G. Rudolph. An evolutionary algorithm for integer programming. In Y. Davidor, H.-P. Schwefel, and R. Männer, editors, Parallel Problem Solving from Nature - PPSN III, Lecture Notes in Computer Science, pages 139–148, Berlin, 1994. Springer.Google Scholar
  7. [7]
    M. Schütz. Eine Evolutionsstrategie für gemischt-ganzzahlige Optimierprobleme mit variabler Dimension. Technical Report SYS-1/96, Department of Computer Science, University of Dortmund, 1996.Google Scholar
  8. [8]
    H.-P. Schwefel. Evolution and Optimum Seeking. Sixth-Generation Computer Technology Series. Wiley, New York, 1995.Google Scholar

Copyright information

© Springer-Verlag London 2000

Authors and Affiliations

  • Michael Emmerich
    • 1
  • Monika Grötzner
    • 2
  • Bernd Groß
    • 2
  • Martin Schütz
    • 1
  1. 1.Center for Applied Systems AnalysisInformatik Centrum DortmundDortmundGermany
  2. 2.Lehrstuhl für Technische ThermodynamikRheinisch-Westfälische Technische Hochschule AachenAachenGermany

Personalised recommendations