Skip to main content

Mutual Control Neural Networks for Sleep Arousal Detection

  • Conference paper
  • 240 Accesses

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

Abstract

We demonstrate the use of artificial neural networks (ANN) to automatically detect arousal states during sleep. In this approach we model the attractor of the underlying process from time series and we show how the hidden control neural networks can be extended to model instationary behavior, by means of mutual control neural networks (MCNN). A verification of the model, based on polysomnographic recordings of 5 patients suffering from obstructive sleep apnea hypopnoea syndrome (OSAHS) is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Sun, N.D. Ryan, R.E. Dahl, H.C. Hsin, S. Iyengar, and R.J. Sclabassi, “A neural network system for automatic classification of sleep stages”, in Proc. 12th South. Biomed. Eng. Conf., pp. 54–64, 1991

    Google Scholar 

  2. S.J. Roberts, M. Krkic, I. Rezek, J. Pardey, L. Tarassenko, J. Stradling and C. Jordan, “The use of Neural Networks in EEG Analysis”, Proc. of IEE Colloquium on Sleep Analysis, Dec. 1995.

    Google Scholar 

  3. C.L. Ehlers, J.W. Havstad, A. Garfinkel, and D.J. Kupfer, “Nonlinear analysis of EEG Sleep Stages”, Neuropsychopharmacology, Vol. 5, Nr. 3, pp. 167–176, 1991.

    Google Scholar 

  4. F. Takens, “Detecting strange attractors in turbulence”, Vol. 898 of Lecture Notes in Mathematics, Dynamical Systems and Turbulence, pp. 366–381, Springer Verlag, 1981.

    Google Scholar 

  5. T. Sauer, J.A. Yorke, and M. Casdagli, “Embedology”, Journal of Statistical Physics, 65(3/4):579–616, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  6. [6] G. Cybenko, “Approximation by superpositions of a sigmoidal function”, Mathematics in Control, Signals, and Systems, 2, pp. 303–314, 1989.

    Google Scholar 

  7. J. Park and I.W. Sandberg, “Universal approximation using radial basis function networks”, Neural Computation 3(2), pp. 246–257, 1991.

    Article  Google Scholar 

  8. Y. Shin and J. Ghosh, “Ridge polynomial networks”, IEEE Trans. Neural Networks, Vol. 6, pp. 610–622, 1995.

    Article  Google Scholar 

  9. T. Assimakopoulos, “Non-autonomous, dynamical system modeling using hidden control neural nets”, Tech. Rep. 94-41, TU-Berlin, Berlin, Germany, 1994.

    Google Scholar 

  10. E. Levin,”Hidden control neural architecture modelling of nonlinear time varying systems and its applications”, IEEE Trans. on Neural Networks, 4(2), pp. 109–116, 1993.

    Google Scholar 

  11. R.S. Huang, C.J. Kuo, L-L. Tsai, and O.T.C. Chen, “EEG pattern recognition — arousal states detection and classification”, pp. 641–645

    Google Scholar 

  12. S.K. Riis and A. Krogh, “Hidden neural networks: A framework for HMM/NN hybrids”, ICASSP97, Vol. 4, pp. 3233–3236

    Google Scholar 

  13. P.J.B. Hancock, “Data represenatation in neural networks: An empirical study”, Connectionist Models Summer School, D.S. Touresky, G.E. Hinton, and T.J. Sejnowsky, Eds., pp. 11–20, San Mateo, 1988.

    Google Scholar 

  14. L.R. Rabiner, “A tutorial on Hidden Markov Models and selected appliications in speech recognition”, Proc. of IEEE, Vol. 77, No 2, pp. 257–286, Feb. 1989

    Article  Google Scholar 

  15. T. Assimakopoulos, “Mutual control neural networks: dynamical system modeling aspects and training issues”, unpublished, TU-Berlin, Berlin, Germany, 1994.

    Google Scholar 

  16. G.D. Forney, “The Viterbi algorithm”, Proc. IEEE, Vol. 61, pp. 268–278, Mar. 1973.

    Article  MathSciNet  Google Scholar 

  17. K. Dingli, S. Quispe-Bravo, I. Fietze, C. Witt, “Breathing and arousals: a retrospective analysis.”, Eur. Respiratory Jour. 10,Suppl. 25, pp. 69s–70s, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this paper

Cite this paper

Assimakopoulos, T., Dingli, K., Douglas, N.J. (2000). Mutual Control Neural Networks for Sleep Arousal Detection. In: Malmgren, H., Borga, M., Niklasson, L. (eds) Artificial Neural Networks in Medicine and Biology. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0513-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0513-8_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-289-1

  • Online ISBN: 978-1-4471-0513-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics