An Optimal VQ Codebook Design Using the Co-adaptation of Learning and Evolution

  • Daijin Kim
  • Sunha Ahn
Conference paper

Abstract

This paper proposes a design method of an optimal VQ (Vector Quantization) codebook using the co-adaptation of self-organizing maps that attempts to incorporates the Kohonen’s learning into the GA evolution. The Kohonen’s learning rule used for vector quantization of images is sensitive to the choice of its initial parameters and the resultant codebook does not guarantee a minimum distortion. We alleviate these problems by co-adapting the codebooks by evolution and learning in a way that the evolution performs the global search and makes inter-codebook adjustments by altering the codebook structures while the learning performs the local search and makes intra-codebook adjustments by making each codebook’s distortion small. Simulation results show that the evolution guided by a local learning provides the fast convergence, the co-adapted codebook produces better reconstruction image quality than the non-learned equivalent, and Lamarckian co-adaptation turns out more appropriate for the VQ problem.

Keywords

Recombination Lution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gersho A., Gray R. M. (1992) Vector quantization and signal compression, Kluwer Academic Publishers.Google Scholar
  2. 2.
    Nasrabadi N. M., King R. A. (1988) Image coding using vector quantization: A Review, IEEE Transaction on Communication, 36, 2166–2173.CrossRefGoogle Scholar
  3. 3.
    Linde Y., Buzo A., Gary R. M. (1980) An algorithm for vector quantizer design, IEEE Transaction on Communication, 28, 84–95.CrossRefGoogle Scholar
  4. 4.
    Kohonen T. (1989) Self-Organization and Associative Memory, Spring-Verlag, Berlin.CrossRefGoogle Scholar
  5. 5.
    Nasrabadi N. M., Feng Y. (1988) Vector quantization of images based upon Kohonen’s self-organizing feature map, IEEE Int. Conf. on Neural Networks, 1, 101–108.CrossRefGoogle Scholar
  6. 6.
    Karayiannis N. B., Pai P. (1996) Fuzzy algorithms for learning vector quantization, IEEE Trans, on Neural Networks, 7, 1196–1211.CrossRefGoogle Scholar
  7. 7.
    Lamarck J. B. (1914) Of the influence of the environment on the activities and habits of animals, Zoological Philosophy, 1, 106–127.Google Scholar
  8. 8.
    Ackley D. E., Littman M. L. (1994) A case for Lamarckian evolution, In: C. G. Langton (ed) Artificial Life III, Addison-Wesley, 3-10.Google Scholar
  9. 9.
    Baldwin J. M. (1896) A new factor in evolution, The American Naturalist, 30, 441–451.CrossRefGoogle Scholar
  10. 10.
    Hinton G. E., Nowlan S. J. (1996) How learning can guide evolution, In: Belew R. K., Mitchell M. (eds), Adaptive Individuals in Evolving Populations: Models and Algorithms, Addison Wesley, 447-454.Google Scholar
  11. 11.
    Parisi D., Nolfi S. (1996) The influence of learning on evolution, In: Belew R. K., Mitchell M. (eds), Adaptive Individuals in Evolving Populations: Models and Algorithms, Addison Wesley, 419-430.Google Scholar
  12. 12.
    Holland J. H. (1975) Adaptation in natural and artificial systems, University of Michigan Press.Google Scholar
  13. 13.
    Goldberg D. E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley Press.Google Scholar
  14. 14.
    Wright A. H. (1991) Genetic algorithms for real parameter optimization, In: Rawlins G. (ed), Foundations of Genetic Algorithms, Morgan Kaufmann Publishers, 250-220.Google Scholar
  15. 15.
    Kim Daijin, Ahn Sunha (1999) A MS-GS VQ codebook design for wireless image communication using genetic algorithms, IEEE Trans. on Evolutionary Computation, 3, 35–52.CrossRefGoogle Scholar
  16. 16.
    Lloyd S. P. (1982) Least squared quantization in PCM, IEEE Transaction on Information Theory, 28, 127–135.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mallat S. G. (1989) A theory of multiresolution signal decomposition: The wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674–693.MATHCrossRefGoogle Scholar
  18. 18.
    Antonini M., Barlaud M., Mathieu P., Daubechies I. (1994) Image coding using wavelet transform, IEEE Transactions on Image Processing, 3, 367–381.CrossRefGoogle Scholar
  19. 19.
    Cheong C. K., Aizawa K., Saito T., Hatori M. (1992) Subband image coding with biorthogonal wavlets, IEICE Trans. Fundamentals, 75, 871–881.Google Scholar
  20. 20.
    Li W., Zhang Y. (1994) A study of vector transform coding of subband-decomposed images, IEEE Transaction on Circuits and Systems for Video Technology, 4, 383–391.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2000

Authors and Affiliations

  • Daijin Kim
    • 1
  • Sunha Ahn
    • 2
  1. 1.Department of Computer Science and EngineeringPOSTECHNam Gu, PohangKorea
  2. 2.Department of Computer EngineeringDongA UniversitySaha Gu, PusanKorea

Personalised recommendations