Skip to main content

The Role of the Artificial Neural Network in the Characterisation of Complex Systems and the Prediction of Disease

  • Chapter
Artificial Neural Networks in Biomedicine

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

  • 183 Accesses

Abstract

The physical sciences have, for a number of years, identified certain systems as ‘complex’. Although the definition of complexity has not been precisely defined, its general nature has. Complex systems are those entities that elude simple reductionist analysis because of their unpredictable non-cause and effect behaviour. These systems, which appear chaotic, can often be characterised by non-Newtonian, non-Cartesian, non-linear analysis. The behaviour of the human organism, in many respects, fulfills the broad definition of a complex system. For years, biomedical science has sought to understand the human organism by way of classic linear analysis. Such characterisation has often proved to be wanting. The artificial neural network is a powerful non-linear paradigm for the recognition of complex patterns. With this in mind, it appears to be fitting that the application of the artificial neural network to some more complicated human biomedical problems might be more successful than the traditional linear approaches used in the past. Described here is the progress that has been made in the application of the artificial neural network to the analysis of human disease. Covered herein is a brief review of the manifold applications of the network to the prediction of the presence of specific disease processes as well as the prediction of outcome in such processes. Although most of these are reports of early studies on small numbers of patients, they virtually all show that the artificial neural network outperforms the established paradigms for the same analysis. Nonetheless, more work will be required before the actual worth of this new paradigm is established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mikulecky, D.C. Complexity, communication between cells, and identifying the functional components of living systems: Some observations. Acta Biotheoretica; 44:179–208, 1996.

    Article  Google Scholar 

  2. Levy, S. Artificial life: The quest for a new creation. New York, Pantheon. 1992.

    Google Scholar 

  3. Goldberger, A. L., and Goldberger, E. Clinical electrocardiography: A simplified approach, 3 edition. C.V. Mosby, St. Loui, 1986.

    Google Scholar 

  4. Goldberger, A. L., Bhargava, V., West, B. J., and Mandell, A. J. On a mechanism of cardiac electrical stability: The fractal hypothesis. Biophysics Journal, 48:525–528, 1985.

    Article  Google Scholar 

  5. Mackey, M. C., and Glass, L. Oscillation and chaos in physiological control systems. Science, 197:287–89, 1977.

    Article  Google Scholar 

  6. Knox, C. K. Characteristics of inflation and deflation reflexes during expiration in the cat. Journal of Neurophysiology, 36:284–95, 1973.

    Google Scholar 

  7. Kiloh L. G., McComas, A. J. Osselton J. W, Upton A. R. M. Clinical Electroencephalography. Butterworths, London 1981.

    Google Scholar 

  8. Molnar, G. D., Taylor, W. F., and Langworthy, A. L. Plasma immunoreactive insulin patterns in insulin-treated diabetics. Mayo Clin Proc, 47:709–19, 1972.

    Google Scholar 

  9. Abraham, N. B., Gollub, J. P., and Swinney, H. L. Testing nonlinear dynamics. Physica, 11D: 252–64, 1984.

    Google Scholar 

  10. Mackey, M. C., Santavy, M., and Selepova. P. A mitotic oscillator model for the cell cycle with a strange attractor. Nonlinear Oscillations in Biology and Chemistry, pp. 34–45. Editor: H.B. Othmer, Springer-Verlag, Berlin.

    Google Scholar 

  11. Chay, T. R., Rinzel, J. Bursting, beating and chaos in an excitable membrane model. Biophysics Journal, 45:357–66, 1985.

    Article  Google Scholar 

  12. Glass, L., and Winfree, A. T. Discontinuities in phase-resetting experiments. American Journal of Physiology, 246:R251–R258, 1984.

    Google Scholar 

  13. Stein, R. B., Lee, R. G., and Nichols, T. R. Modifications of ongoing tremors and locomotion by sensory feedback. Electroencephelography of Clinical Neurophysiology, 34(Suppl):511–19, 1978.

    Google Scholar 

  14. Sarna, S. K. Cyclic motor activity: Migrating motor complex. Gastroenterology, 89:894–913, 1985.

    Google Scholar 

  15. Bortoff, A. Electrical activity of intestine recorded with pressure electrode. American Journal of Physiology, 201:209–12, 1961.

    Google Scholar 

  16. Schulman, H., Duvivier, R., and Blattner, P. The uterine contractility index. American Journal Obstet Gynecol, 145:1049–58, 1983.

    Google Scholar 

  17. Stark, L. W. Neurological control systems: Studies in bioengineering. New York: Plenum.

    Google Scholar 

  18. Goldberger, A. L., Rigney, D. R., and West, B. Chaos and fractals in human physiology. Sci Am, 262(2):43–49, 1990.

    Article  Google Scholar 

  19. Ryback, R. S., Eckardt, M. J., Felsher, B., and Rawlings, R. R. Biochemical and hematologic correlates of alcoholism and liver disease. J Am Med Assoc, 248:2261–2265, 1982.

    Article  Google Scholar 

  20. Ryback, R. S., Eckardt, M. J., Rawlings, R. R., and Rosenthal, L. S. Quadratic discriminant analysis as an aid to interpretive reporting of clinical laboratory tests. J Am Med Assoc, 248:2342–2345, 1982.

    Article  Google Scholar 

  21. Obana, I., and Fukui, Y. Role Of Chaos In Trial-And-Error Problem Solving By An Artificial Neural Network. International J Neural Systems, 7(1):101–108, 1996.

    Article  Google Scholar 

  22. Forsstrom, J. J., and Dalton, K. J. Artificial Neural Networks for Decision Support in Clinical Medicine. Annals of Medicine, 27:509–517, 1995.

    Article  Google Scholar 

  23. Baxt, W. G. Use of an artificial neural network for data analysis in clinical decision-making: The diagnosis of acute coronary occlusion. Neural Comput, 2:480–489, 1992.

    Article  Google Scholar 

  24. Baxt, W. G. Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med, 115:843–848, 1991.

    Google Scholar 

  25. Harrison, R. F., Marshall, S. J., and Kennedy, R. L. The early diagnosis of heart attacks: A neurocomputational approach. Proceedings of the International Joint Conference on Neural Networks,Seattle, 1:1–5, 1991.

    Article  Google Scholar 

  26. Kennedy, R. L., Harrison, R. F., Burton, A. M., Fraser, H. S., and Hamer, W. G., et al: An artificial neural network system for diagnosis of acute myocardial infarction (AMI) in the accident and emergency department: Evaluation and comparison with serum myoglobin measurements. Computer Methods and Programs in Biomedicine, 52:93–103, 1997.

    Article  Google Scholar 

  27. Heden, B., Ohlin, H., Rittner, R., and Edenbrandt, L. Acute Myocardial Infarction Detected in the 12-Lead ECG by Artificial Neural Networks. Circ. 96:1798–1802, 1997.

    Article  Google Scholar 

  28. Maglaveras, N., Stamkopoulos, T., Pappas, C., and Strintzis, M. G. An adaptive backpropagation neural network for real-time ischemia episodes detection: Development and performance analysis using the European ST-T database. IEEE Transactions on Biomedical Engineering, 45(7):805–13, 1998.

    Article  Google Scholar 

  29. Pedersen, S., Jorgensen, J. S., and Pedersen, J. B. Use of neural networks to diagnose acute myocardial infarction. II. A clinical application. Clinical Chemistry, 42(4):613–617, 1996.

    Google Scholar 

  30. Ellenius, J., Groth, T., Lindahl, B., and Wallentin, L. Early assessment of patients with suspected acute myocardial infarction by biochemical monitoring and neural network analysis. Clinical Chemistry, 43(10):1919–1925, 1997.

    Google Scholar 

  31. Tourassi, G. D., Floyd, C. E., Sostman, H. D., and Coleman RE Artificial neural network for diagnosis of acute pulmonary embolism: Effect of case and observer selection. Radiology, 194:889–893, 1995.

    Google Scholar 

  32. Tourassi, G. D., Floyd, C. E., and Coleman, E. Improved noninvasive diagnosis of acute pulmonary embolism with optimally selected clinical and chest radiographic findings. Acad Radiol, 3:1012–1018, 1996.

    Article  Google Scholar 

  33. Tourassi, G. D., Floyd, G. D., and Coleman, R. E. Acute pulmonary embolism: Cost-effectiveness analysis of the effect of artificial neural networks on patient care. Radiology, 206:81–88, 1998.

    Google Scholar 

  34. Dumitra, A., Radulescu, E., and Lazarescu, V. Improved classification of psychiatric mood disorders using a feedforward neural network. Medinfo,8 Pt 1:818–22, 1995.

    Google Scholar 

  35. Modai, I., Israel, A., Mendel, S., Hines, E., and Weizman R. Neural network based on adaptive resonance theory as compared to experts in suggesting treatment for schizophrenic and unipolar depressed in-patients. J Med Systems, 20(6):403–412, 1996.

    Article  Google Scholar 

  36. Zou, Y., Shen, Y., Shu, L., Wang, Y., Feng, F., and Xu K, et al. Artificial neural network to assist psychiatric diagnosis. British J Psychiatry, 169:64–67, 1996.

    Article  Google Scholar 

  37. Izenberg, S. D., Williams, M. D., and Luterman, A. Prediction of trauma mortality using a neural network. The American Surgeon, 63:275–281, 1997.

    Google Scholar 

  38. Rutledge, R. Injury severity and probability of survival assessment in trauma patients using a predictive hierarchical network model derived from ICD-9 codes. J Trauma, 38(4):590–601, 1995.

    Article  Google Scholar 

  39. Rutledge, R., Osier, T., Emery, S., and Kromhout-Schiro, S. The end of the injury severity score (ISS) and the trauma and injury severity score (TRISS): ICISS, an international classification of diseases, ninth revision-based prediction tool, outperforms both ISS and TRISS as predictors of trauma patient survival, hospital charges, and hospital length of stay. J Trauma, 44(1):44–49, 1998.

    Google Scholar 

  40. Devoe, L., Carlton, E., Prescott, P. Neural network prediction of nonstress test results: How often should we perform nonstress tests? Am J Obstet Gynecol, 173:1128–31, 1995

    Article  Google Scholar 

  41. Viktor, H. L., Cloete, I., and Beyers, N. Extraction of rules for tuberculosis diagnosis using an artificial neural network. Meth Inform Med, 36:160–2, 1997.

    Google Scholar 

  42. Speri, L., Schiliro, G., Bezzetto, A., Cifelli, G., and De Battisti, L., et al. The use of artificial neural networks methodology in the assessment of ‘vulnerability’ to heroin use among army corps soldiers: A preliminary study of 170 Cases inside the military hospital of legal medicine of verona. Substance Use & Misuse, 33(3):555–586, 1998.

    Article  Google Scholar 

  43. French, B. M., Dawson, M. R.W., and Dobbs, A. R. Classification and staging of dementia of the alzheimer type. Arch Neurol, 54:1001–9, 1997.

    Article  Google Scholar 

  44. Hamilton, D., O’Mahony, D., Coffey, J., Murphy, J., and O’Hare, N., et al: Classification of mild Alzheimer’s disease by artificial neural network analysis of SPET data. Nuclear Medicine Communications, 18:805–810, 1997.

    Article  Google Scholar 

  45. Pesonen, E., Eskelinen, M., Juhola, M. Comparison of different neural network algorithms in the diagnosis of acute appendicitis. International J Bio-Medical Computing, 40:227–233, 1996.

    Article  Google Scholar 

  46. Pesonen, E., Ohmann, C., Eskelinen, M., and Juhola, M. Diagnosis of acute appendicitis in two databases: Evaluation of different neighborhoods with an LVQ neural network. Meth Inform Med, 37:59–63, 1998.

    Google Scholar 

  47. Shanker, M. S. Using neural networks to predict the onset of diabetes mellitus. J Chem Inf Comput Sci, 36:35–41, 1996.

    Article  Google Scholar 

  48. Bishop, J. B., Szpalski, M., Ananthraman, S. K., McIntyre, D. R., and Pope M. H. Classification of low back pain from dynamic motion characteristics using an artificial neural network. Spine, 22(24):2991–2998, 1997.

    Article  Google Scholar 

  49. Park, H. A., Lee, E. O., Song, M. S. Development of a nursing diagnosis system using a back-propagation neural network model: An application for stomach cancer patients. Medinfo, p.1399–403, 1995.

    Google Scholar 

  50. Eisenstein, E. L., Alemi, F. A comparison of three techniques for rapid model development: An application in patient risk-stratification. Proceedings of the AMIA Annual Fall Symposium, 443–7, 1996.

    Google Scholar 

  51. Faraggi, D., and Simon, R. A neural network model for survival data. Statistics in Medicine, 14(1):73–82, 1995.

    Article  MathSciNet  Google Scholar 

  52. Ohno-Machado, L., Walker, M. G., Musen, M. A. Hierarchical neural networks for survival analysis. Medinfo, 8 Pt 1:828–32, 1995.

    Google Scholar 

  53. Dybowski, R., Weller, P., Chang, R., and Gant, V. Prediction of outcome in critically ill patients using artificial neural network synthesized by genetic algorithm. Lancet, 347(9009):1146–50, 1996.

    Article  Google Scholar 

  54. Artioli, E., Avanzolini, G., Martelli, L., and Ursino, M. An expert system based on causal knowledge: Validation on post-cardiosurgical patients. International J of Bio-Med Computing, 41:19–37, 1996.

    Article  Google Scholar 

  55. Orr, R. K. Use of a probabilistic neural network to estimate the risk of mortality after cardiac surgery. Med Decis Makin, 17:178–185 1997.

    Article  Google Scholar 

  56. Lippmann, R. P., Shahian, D. M. Coronary artery bypass risk prediction using neural networks. Ann Thorac Surg, 63:1635–43, 1997.

    Article  Google Scholar 

  57. Ortiz, J., Ghefter, C. L.G. M., Silva, C. E. S., and Sabbatini, R. M. E. One-year mortality prognosis in heart failure: A neural network approach based on echocardiographic data. J Am Coll Cardiol, 26:1586–93, 1995.

    Article  Google Scholar 

  58. Mobley, B. A., Leasure, R., and Davidson, L. Artificial neural network predictions of lengths of stay on a post-coronary care unit. Heart & Lung, 24(3):251–256, 1995.

    Article  Google Scholar 

  59. Lapuerta, P., Azen, S.P, and LaBree, L. Use of neural networks in predicting the risk of coronary artery disease. Computers and Biomedical Research, 28:38–52, 1995.

    Article  Google Scholar 

  60. Lapuerta, P., L’Italien, G. J., Paul, S., Hendel, R. C., Leppo, J. A., and Fleisher, L. A., et al Neural network assessment of perioperative cardiac risk in vascular surgery patients. Med Decis Making, 18:70–75, 1998.

    Article  Google Scholar 

  61. Oczkowski, W. J., Barreca, S. Neural network modeling accurately predicts the functional outcome of stroke survivors with moderate disabilities. Arch Phys Med Rehabil, 78:340–345, 1997.

    Article  Google Scholar 

  62. Grigsby, J., Kramer, R. E., Schneiders, J. L., Gates, J. R, Smith, W. B. Predicting outcome of anterior temporal lobectomy using simulated neural networks. Epilepsia, 39(1):61–66, 1998.

    Article  Google Scholar 

  63. Dvorchik, I., Subotin, M., Marsh, W., McMichael, J., Fung, J. J. Performance of multi-layer feedforward neural networks to predict liver transplantation outcome. Meth Inform Med, 35:12–8, 1996.

    Google Scholar 

  64. Frye, K. E., Izenberg, S. D., Williams, M. D., Luterman, A. Simulated biologic intelligence used to predict length of stay and survival of burns. J Burn Care Rehabil, 17:540–6, 1996.

    Article  Google Scholar 

  65. Lovell, D. R., Rosario, B., Niranjan, M., Prager, R. W., Dalton, K. J., Derom, R., Chalmers, J. Design, construction and evaluation of systems to predict risk in obstetrics. International J of Medical Informatics, 46:159–173, 1997.

    Article  Google Scholar 

  66. Dombi, G. W. N. P., Saxe, J. M., Ledgerwood, A. M., Lucas, C. E. Prediction of rib fracture injury outcome by an artificial neural network. J Trauma, 39(5):915–921, 1995.

    Article  Google Scholar 

  67. Schwartz, M. H., Ward, R. E., MacWilliam, C., Verner, J. J. Using neural networks to identify patients unlikely to achieve a reduction in bodily pain after total hip replacement surgery. Medical Care, 35(10):1020–1030, 1997.

    Article  Google Scholar 

  68. Warner, A., Bencosme, A., Polycarpou, M. M., Healy, D., and Verme, C., et al. Multiparameter models for the prediction of sepsis outcome. Annals Clinical Lab Science, 26(6):471–479, 1996.

    Google Scholar 

  69. Bellotti, M., Elsner, B., De Lima, A. P., Esteva, H., and Marchevsky, A. M. Neural networks as a prognostic tool for patients with non-small cell carcinoma of the lung. Mod Pathol, 10(12):1221–1227, 1997.

    Google Scholar 

  70. Jefferson, M. F., Pendleton, N., Lucas, S. B., and Horan, M. A. Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with non small cell lung carcinoma. Cancer, 79(7):1338–42, 1997.

    Article  Google Scholar 

  71. Burke, H. B., Goodman, P. H., Rosen, D. B., Henson, D. E., and Weinstein, J. N., et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer, 79(4):857–862, 1997.

    Article  Google Scholar 

  72. Reinus, W. R., Kalman, B., and Kwasny, S. Artificial neural networks for screening patients needing emergency cranial computed tomography scans in emergency departments. Acad Radiol, 2:193–198, 1995.

    Article  Google Scholar 

  73. Ohno-Machado, L., and Musen, M. A. A comparison of two computer-based prognostic systems for AIDS. In The annual symposium on computer applications in medical care, Section on Medical Informatics, Stanford University, School of Medicine, Stanford, CA p. 737–41, 1995.

    Google Scholar 

  74. Ohno-Machado, L., Walker, M. G., and Musen, M. A. Hierarchical neural networks for survival analysis. Medinfo, 8 Pt 1:828–32, 1995.

    Google Scholar 

  75. Ohno-Machado, L. Sequential use of neural networks for survival prediction in AIDS. Proceedings/AMIA Annual Fall Symposium, 170–174, 1996.

    Google Scholar 

  76. van Ballegooijen, M., Beck, S., Boon, M. E., Boer, R., Habbema, J. D. Rescreen effect in conventional and PAPNET screening: Observed in a study using material enriched with positive smears. Acta Cytologica, 42(5):1133–8, 1998.

    Article  Google Scholar 

  77. Spitzer, M. Cervical screening adjuncts: Recent advances. American J of Obstetrics & Gynecology, 179(2):544–56, 1998.

    Article  Google Scholar 

  78. Schechter, C. B. Rescreening of cervical Papanicolaou smears using PAPNET. JAMA, 279(22):1787–8, 1998.

    Google Scholar 

  79. Mango, L. J., Radensky, P. W. Rescreening of cervical Papanicolaou smears using PAPNET. JAMA, 279(22):1786–7, 1998.

    Google Scholar 

  80. Koss, L. G. Rescreening of cervical Papanicolaou smears using PAPNET. JAMA, 279(22):1786, 1998.

    Google Scholar 

  81. Greenberg, M. D. Rescreening of cervical Papanicolaou smears using PAPNET. JAMA, 279(22):1785–6, 1998.

    Article  Google Scholar 

  82. O’Leary, T. J, Tellado, M., Buckner, S. B., Ali, I. S., Stevens, A., 011ayos, C. W. PAPNET-assisted rescreening of cervical smears: Cost and accuracy compared with a 100% manual rescreening strategy. JAMA, 279(3):235–7, 1998.

    Article  Google Scholar 

  83. Wright, R. G. PAPNET superior to rapid rescreening. Med J Australia, 168(5):253–4, 1998.

    Google Scholar 

  84. Sturgis, C. D., Isoe, C., McNeal, N. E, Yu, G. H., and DeFrias, D. V. PAPNET computer-aided rescreening for detection of benign and malignant glandular elements in cervicovaginal smears: A review of 61 cases. Diagnostic Cytopathology, 18(4):307–11, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Baxt, W.G. (2000). The Role of the Artificial Neural Network in the Characterisation of Complex Systems and the Prediction of Disease. In: Lisboa, P.J.G., Ifeachor, E.C., Szczepaniak, P.S. (eds) Artificial Neural Networks in Biomedicine. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0487-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0487-2_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-005-7

  • Online ISBN: 978-1-4471-0487-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics