Skip to main content

Classification of Chromosomes: A Comparative Study of Neural Network and Statistical Approaches

  • Chapter
  • 179 Accesses

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

Abstract

In a normal human cell there are 46 chromosomes which, at appropriate stages of cell division (prophase and metaphase) can be observed as separate objects using high resolution light microscopy. Figure 18.1 shows chromosomes in a metaphase cell. The chromosomes have been stained to exhibit a series of bands along their lengths. Each chromosome also has a characteristic constriction called the centromere (indicated for some chromosomes in Figure 18.1a). Analysis of the appearance of chromosomes is routinely undertaken in hospital laboratories, for example, for diagnosis of inherited, or acquired, genetic abnormality or the monitoring of cancer treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ledley, R. S. High speed automatic analysis of biomedical pictures. Science, 146:216–223, 1964.

    Article  Google Scholar 

  2. Graham, J. Automation of routine clinical chromosome analysis I. Karyotyping by machine. Analytical and Quantitative Cytology and Histology, 9:383–390, 1987.

    Google Scholar 

  3. Lundsteen, C., and Martin, A. O. On the selection of systems for automated cytogenetic analysis. American Journal of Medical Genetics, 32:72–80, 1989.

    Article  Google Scholar 

  4. Graham, J., and Piper, J. Automatic Karyotype Analysis. Chromosome Analysis Protocols. Vol. 29. J.R. Gosden (Ed.) Humana Press, 1994, pp. 141–185.

    Chapter  Google Scholar 

  5. Piper, J., and Granum, E. On fully automated feature measurement for banded chromosome classification. Cytometry, 10:242–255, 1989.

    Article  Google Scholar 

  6. Lundsteen, C., and Granum, E. Visual classification of banded chromosomes, I. Karyotyping compared with classification of isolated chromosomes. Annals of Human Genetics, 40:87–97, 1976.

    Article  Google Scholar 

  7. Granlund, G. H. Identification of human chromosomes by integrated density profiles. IEEE Transactions on Biomedical Engineering, 23:182–192, 1976.

    Article  Google Scholar 

  8. Granum, E. Application of statistical and syntactic methods of analysis to classification of chromosome data. Pattern Recognition Theory and Applications. J. Kittler, K.S. Fu, and L.S. Pau (Eds.) D. Reidel, 1982, pp. 373–397.

    Chapter  Google Scholar 

  9. Groen, F. C. A., ten Kate, T. K., Smeulders, A. W. M., and Young I. T. Human chromosome classification based on local band descriptors. Pattern Recognition Letters, 9:211–222, 1989.

    Article  MATH  Google Scholar 

  10. Gregor, J., and Thomason, G. Hybrid pattern recognition using Markov networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:651–656, 1993.

    Article  Google Scholar 

  11. Jennings, A. M., and Graham, J. A neural network approach to automatic chromosome classification. Physics in Medicine and Biology, 38:959–970, 1993.

    Article  Google Scholar 

  12. Errington, P. A., and Graham, J. Application of artificial neural networks to chromosome classification. Cytometry, 14:627–639, 1993.

    Article  Google Scholar 

  13. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning internal representations by error propagation. Parallel Distributed Processing: Explorations in the Microstructures of Cognition. Vol. 1. D.E. Rumelhart and J.L. McClelland (Eds.) MIT Press, 1986, pp. 318–362.

    Google Scholar 

  14. Piper, J. Variability and bias in experimentally measured classifier error rates. Pattern Recognition Letters, 13:685–692, 1991.

    Article  Google Scholar 

  15. James, M. Classification Algorithms. Collins, London, 1985.

    Google Scholar 

  16. Piper, J. Classification of chromosomes constrained by expected class size. Pattern Recognition Letters, 4:391–395, 1986.

    Article  Google Scholar 

  17. Piper, J. Genetic algorithm for applying constraints in chromosome classification. Pattern Recognition Letters, 16:857–864, 1992.

    Article  Google Scholar 

  18. Tso, M. K. S., and Graham, J. The Transportation Algorithm as an aid to chromosome classification. Pattern Recognition Letters, 1:489–496, 1983.

    Article  MATH  Google Scholar 

  19. Tso, M. K. S., Kleinscmidt, P., Mitterreiter, I., and Graham, J. An efficient Transportation Algorithm for automatic chromosome karyotyping. Pattern Recognition Letters, 12:117–126, 1991.

    Article  Google Scholar 

  20. Rumelhart, D. E., and Zipser, D. Feature discovery by competitive learning. Parallel Distributed Processing: Explorations in the Microstructures of Cognition. Vol. 1. D.E. Rumelhart and J.L. McClelland (Eds.) MIT Press, 1986, pp. 151–193.

    Google Scholar 

  21. Errington, P. A., and Graham, J. Classification of chromosomes using a combination of neural networks. In IEEE International Conference on Neural Networks (1993), San Francisco, CA. pp. 1236–1241.

    Google Scholar 

  22. Lerner, B. Toward ‘a completely automatic neural-network-based human chromosome analysis. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 28:544–552, 1998.

    Article  Google Scholar 

  23. Kleinschmidt, P., Mitterreiter, I., and Piper, J. Improved chromosome classification using monotonic functions of mahalanobis distance and the transportation method. ZOR - Mathematical Methods of Operations Research, 40:305–323, 1994.

    Article  MATH  Google Scholar 

  24. Trask, B. J. Fluorescence in situ hybridisation: applications in cytogenetics and gene mapping. Trends in Genetics, 7:149–154, 1991.

    Google Scholar 

  25. Kallioniemi, A., Kallioniemi, 0.-P., Sudar, D., et al. Comparative genomic hybridisation for molecular cytogenetic analysis of solid tumours. Science, 258:818–821, 1992.

    Article  Google Scholar 

  26. Speicher, M. R., Ballard, S. G., and Ward, D. C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genetics, 12:368–375, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Graham, J., Errington, P.A. (2000). Classification of Chromosomes: A Comparative Study of Neural Network and Statistical Approaches. In: Lisboa, P.J.G., Ifeachor, E.C., Szczepaniak, P.S. (eds) Artificial Neural Networks in Biomedicine. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0487-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0487-2_19

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-005-7

  • Online ISBN: 978-1-4471-0487-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics