Skip to main content

Importance of Prosthesis Design and Surface Structure for the Primary and Secondary Stability of Uncemented Hip Joint Prostheses

  • Chapter
Interfaces in Total Hip Arthroplasty
  • 216 Accesses

Abstract

Primary stability and survival, i.e. long-term fixation, of a hip joint prosthesis is determined by the implant material, the bone stock serving as the implant bed, and the interaction between the implant material and the bone stock. The fate of a cementless artificial joint is decided at the interface or boundary between the bone and the implant, where living tissue meets bioinert (i.e. non-living) material. Numerous causes of loosening of aseptic implants have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Åkesson K, Önsten I, Obrant KJ (1994) Periarticular bone in rheumatoid arthritis versus arthrosis. Histomorphometry in 103 hip biopsies. Acta Orthop Scandinavica 65:135–138

    Article  Google Scholar 

  2. Alexeef M, Mahomed N, Morsi E, Garbuz D, Gross A (1996) Structural allograft in two-stage revisions for failed septic hip arthroplasty. J Bone Joint Surg 78B(2):213–216

    Google Scholar 

  3. Ang KC, Dasde S, Goh IHC, Low SL, Bose K (1997) Peri-prosthetic bone remodelling after cementless total hip replacement. J Bone Joint Surg Br 79:675–679

    Article  PubMed  CAS  Google Scholar 

  4. Asmuth T, Bachmann J, Eingartner C, Feldmann C, aus der Fünten K, Holz F, Hübenthal L, Papp J, Quack, G, Sauer, G (1998) Ergebnisse des zementfrei implantierten BiCONTACT Schaftes — Multicenter Studie mit 553 Fällen. In: Weller S, Braun A, Gekeler R, Volkmann R, Weise K (ed) Das BiCONTACT Hüftendoprothesensystem, Georg Thieme Verlag, Stuttgart, pp 63–74

    Google Scholar 

  5. Barrack RL (1995) Economics of revision total hip arthroplasty. Clin Orthop 319:209–214

    PubMed  Google Scholar 

  6. Barrack RL, Mulroy RD Jr., Harris WH (1992) Improved cementing techniques and femoral component loosening in young patients with hip arthroplasty. A 12-year radiographic review. J Bone Joint Surg 74B(3):385–389

    Google Scholar 

  7. Blömer W, Ungethüm M (1992) Überlegungen zum Pfannendesign. Sphärisch oder konisch? Gewinde selbstschneidend oder geschnitten. In: Hipp E, Gradinger R, Ascherl R (ed) Die zementlose Hüftprothese. Demeter

    Google Scholar 

  8. Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC (1980) The optimum pore size for the fixation of porous surfaced metal implants by the ingrowth of bone. Clin Orthop 150:263–270

    PubMed  Google Scholar 

  9. Bülow JUG, Scheller G, Arnold P, Synatschke M, Jani L (1996) Uncemented total hip replacement and tight pain. Int Orthop 20:65–69

    Article  PubMed  Google Scholar 

  10. Cameron HU, Pilliar RM, Macnab J (1973) The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res 7:301–311

    Article  PubMed  CAS  Google Scholar 

  11. Chmell MJ, Scott RD, Thomas WH, Sledge CB (1997) Total hip arthroplasty with cement for juvenile rheumatoid arthrotis. Results at a minimum of ten years in patients less than thirty years old. J Bone Joint Surg 79A:44–52

    Google Scholar 

  12. Cook SD, Thomas KA, Kay SF, Jarcho M (1988) Hydroxy-lapatite-Coated Porous Titanium for Use as an Orthopaedic Biologie Attachment System. Clin Orthop 230:303–312

    PubMed  CAS  Google Scholar 

  13. Cordero J, Munuera L, Folgueira MD (1994). Influence of metal implants on infection. An experimental study in rabbits. J Bone Joint Surg 76 B(5):717–720

    Google Scholar 

  14. David A, Eitenmüller J, Muhr G, Pommer A, Bär HF, Ostermann PAW, Schildhauer, TA (1995) Mechanical and histological evaluation of hydroxyapatite-coated, titanium-coated and gritblasted surfaces under weight bearing conditions. Arch Orthop Trauma Surg 114:112–118

    Article  PubMed  CAS  Google Scholar 

  15. David A, Lewandrowski KU, Eitenmiiller J, Muhr G, Pommer A, Bär HF, Ostermann, PAW (1996) Interlocking strength in hydroxyapatite-and titanium-coated implants under weightbearing conditions: A biomechanical and histologic study. Orthopaedics International Edition 4, 3:209–218

    Google Scholar 

  16. Dorey F, Amstutz HC (1986) Survivorship Analysis in the evaluating of joint replacement. J Arthroplasty 1:63–69

    Article  PubMed  CAS  Google Scholar 

  17. Duncan CP, Masri BA (1994) The role of antibiotic-loaded cement in the treatment of an infection after a hip replacement. J Bone Joint Surg 76A:1742–1751

    Google Scholar 

  18. Eckert H (1988) Das zementlose Hüftendoprothesensystem Zweymüller-Endler, kurz-und mittelfristige Ergebnisse. MD thesis, University of München

    Google Scholar 

  19. Eingartner C, Volkmann R, Kümmel K, Weller S (1997) Niedrige Lockerungsrate einer zementierten Geradschaftprothese im längerfristigen Verlauf. Swiss Surg 2:49–54

    Google Scholar 

  20. Engh CA, Bobyn JD, Glassmann AH, (1987) Porous-coated hip replacenent. J Bone Joint Surg Br 69:45–55

    PubMed  CAS  Google Scholar 

  21. Engh CA, Massin P, Suthers KE (1990) Roentgenographic assessment of the biologic fixation of porous-surfaced femoral components. Clin Orthop 257:107–128

    PubMed  Google Scholar 

  22. Engh CA, Hooten JP, Zettl-Schaffer KF, Ghaffarpour M, Mc Gover TF, Macalino GE (1994) Porous-coated total hip replacement. Clin Orthop 298:89–96

    PubMed  Google Scholar 

  23. Engh CA Jr, Culpepper WJ 2nd, Engh CA (1997) Long-term results of use of the anatomic medullary locking prosthesis in total hip arthroplasty. J Bone Joint Surg Am 79(2):177–184

    Article  PubMed  Google Scholar 

  24. Fink U (1996) PLASMAPORE: A plasma-sprayed microp-orous Titanium coating to improve the long term stability. In: Naivard D, Merle M, Delagoutte JP, Louis JP, Sedel L (ed): Actualités en Biomatériaux 111:97-104

    Google Scholar 

  25. Frost HM (1988) Vital biomechanics, proposed general concepts for skeletal adaptations to mechanical usage. Calcif Tissue Int 42:145–156

    Article  PubMed  CAS  Google Scholar 

  26. Garvin KL, Hanssen AD (1995) Current concepts review. Infection after total hip arthroplasty. Past, present and future. J Bone Joint Surg 77A:1576–1588

    Google Scholar 

  27. Geesink RG, Hoefnagels NH (1995) Six-year results of hydroxyapatite-coated total hip replacement. J Bone Surg Br 77(4):534–547

    CAS  Google Scholar 

  28. Gellrich JC (1998) Osteodensiometrische und radiologische Beurteilung zum Einheilungsverhalten zementfreier Hüftendoprothesen (BiCONTACT). MD thesis, University of Heidelberg

    Google Scholar 

  29. Gellrich JC, Braun A, Gross U (1998) Histologische und osteodensitometrische Untersuchungen periprothetis-cher Knochenreaktionen am zementfrei implantierten BiCONTACT-Schaft. In: Weller S, Braun A, Gekeler R, Volkmann R, Weise K (ed) Das BiCONTACT Hüftendoprothesensystem, Georg Thieme Verlag, Stuttgart, pp 189–200

    Google Scholar 

  30. Gross U (1985) Verbundvorhaben Verbesserung der Langzeitstabilität von Endoprothesen: Messung biologischer Wirkungsgrö¿en am Interface oberflächenaktiver Implantatmaterialien. Förderkennzeichen 01 VT 8603 Bundesministerium für Forschung und Technologie

    Google Scholar 

  31. Gustillo RB, Burnham WH (1982) Long-term results of total hip arthroplasty in young patients. In: The Hip. Proceedings of the Tenth Open Scientific Meeting of the Hip Society. St. Louis, C. V. Mosby, pp. 27–33

    Google Scholar 

  32. Hagemann JE (1990) Knochendichtemessung. Eigenverlag Picker International GmbH Picker aktuell 15:43–45

    Google Scholar 

  33. Hanssen AD, Osmon DR, Nelson CL (1996) Prevention of deep periprosthetic joint infection. J Bone Joint Surg 78A:458–471

    Google Scholar 

  34. Harris WH, Davies JP (1988) Modern use of modern cement for total hip replacement. Clin Orthop 19:581–589

    CAS  Google Scholar 

  35. Helfen M, Malzer U, Peters P, Griss P, Himmelmann G, Weber E (1993) Zementfreie Pfanne und zementierter Schaft-Konzept einer “Hybrid-Lösung” sowie Ergebnisse einer drei-bis sechsjährigen klinischen Erfahrung. Z Orthop 131:578–584

    Article  PubMed  CAS  Google Scholar 

  36. Herberts P, Ahnfeit L, Malchau H, Strömberg C, Andersson GBJ (1989) Multicenter clinical trials and their value in assessing total joint arthroplasty. Clin Orthop 249:48–55

    PubMed  Google Scholar 

  37. Hozack WJ, Rothmann RH, Booth RE Jr, Balderston RA, Cohn JC, Pickens GT (1990) Survivorship analysis of 1,041 Charnley total hip arthroplasties. J Arthroplasty 5:41–47

    Article  PubMed  CAS  Google Scholar 

  38. Jasty M, Maloney WJ, Bragdon CR, Haire T, Harris WH (1990) Histomorphological studies of the long-term skeletal responses to well fixed cemented femoral components. J Bone Joint Surg 72A:1220–1229

    Google Scholar 

  39. Joshi AB, Porter ML, Trail IA, Hunt LP, Murphy JC, Hardinge K (1993) Long-term results of Charnley low-friction arthroplasty in young patients. J Bone Joint Surg 75B(4):616–623

    Google Scholar 

  40. Kiratli BJ, Heiner JP, Mc Beath AA, Wilson MA (1992) Determination of bone mineral density by dual X-ray absorptiometry in patients with uncemented total hip arthroplasty. J Orthop Res 10:836–844

    Article  PubMed  CAS  Google Scholar 

  41. Korovessis P, Repanti M (1994) Evolution of aggressive granulomatous periprosthetic lesions in cemented hip arthroplasties. Clin Orthop 155-161

    Google Scholar 

  42. MacKenzie JR, Kelley SS, Johnston RC (1996) Total hip replacement for coxarthrosis secondary to congenital dysplasia and dislocation of the hip. Long-term results. J Bone Joint Surg 78A:55–61

    Google Scholar 

  43. Mallory TH, Head WC, Lombardi jr AV, Emerson jr RH, Eberle RW, Mitchell MB (1996) Clinical and radiographie outcome of a cementless, titanium, plasma-coated total hip arthroplasty femoral component. Justification for continuance of use. J Arthroplasty 11(6):653–660

    Article  PubMed  CAS  Google Scholar 

  44. Marston RA, Cobb AG, Bentley G (1996) Stanmore compared with Charnley total hip replacement. A prospective study of 413 hip arthroplasties. J Bone Joint Surg 78B(2):178–184

    Google Scholar 

  45. McCoy TH, Salvati EA, Ranawat CS, Wilson PD Jr. (1988) A fifteen-year follow-up study of one hundred Charnley low-friction arthroplasties. Clin Orthop 19:467–476

    CAS  Google Scholar 

  46. Mulroy RD Jr., Harris WH (1990) The effect of improved cementing techniques on component loosening in total hip replacement. An 11-year radiographie review. J Bone Joint Surg 72B(5):757–760

    Google Scholar 

  47. Mulroy WF, Harris WH (1996) Revision total hip arthroplasty with use of so-called second-generation cementing techniques for aseptic loosening of the femoral component. A fifteen-year average follow-up study. J Bone Joint Surg 78A:325–330

    Google Scholar 

  48. Neumann L, Freund KG, Sorensen KH (1996) Total hip arthroplasty with the Charnley prosthesis in patients fifty-five years old and less. Fifteen to twenty-one-year results. J Bone Joint Surg 78A:73–79

    Google Scholar 

  49. Okamoto T, Inao S, Gototh E, Ando M (1997) Primary Charnley total hip arthroplasty for congenital dysplasia: effect of improved techniques of cementing. J Bone Joint Surg 79B(1):83–86

    Article  Google Scholar 

  50. Ottenbach A, Breitenfelder J (1996) Mittelfristige Ergebnisse der zementlosen Hüftgelenktotalendoprothetik: BiContact-Modell versus Mittelmeier-Hüfte. Orthopädische Praxis 92(4):224–227

    Google Scholar 

  51. Pitto RP, Böhner J, Hofmeister V (1997) Einflußgrößen der Primärstabilität acetabulärer Komponenten. Eine In-vitro-Studie. Biomed, Technik 42:363–368

    Article  CAS  Google Scholar 

  52. Puhl W (ed) (1997): Performance of the Wear Couple BIOLOX forte. In: Hip Arthroplasty. Enke, Stuttgart

    Google Scholar 

  53. Refior HJ (ed) (1987) Zementfreie Implantation von Hüftgelenksendoprothesen — Standortbestimmung und Tendenzen. Thieme, Stuttgart, New York

    Google Scholar 

  54. Roesler H (1997) The history of some fundamental concepts in bone biomechanics. J Biomechanics 20:1025–1034

    Article  Google Scholar 

  55. Smith SE; Harris WH (1997) Total Hip Arthroplasty Performed with Insertion of the Femoral Component with Cement and the Acetabular Component without Cement. J Bone Joint Surg 79A:1827–1833

    Google Scholar 

  56. Sochart DH, Porter ML (1997) Long-term results of total hip replacement in young patients who had ankylosing Spondylitis. J Bone Joint Surg 79-A:1181–1189

    Google Scholar 

  57. Spitz J, Stoecker M, Clemenz N, Kempers B, Fischer M (1990) Vergleichende Messung des Knochenmineralgehalts mit DPA — Erste klinische Erfahrungen. Fortschr Röntgenstr. 152:340–344

    Article  CAS  Google Scholar 

  58. Sumner DR, Turner TM, Urban RM, Galante JO (1992) Remodelling and ingrowth of bone at two years in a canine cementless total hip arthroplasty model. J Bone Joint Surg 74A:239–250

    Google Scholar 

  59. Torchia ME, Klassen RA, Bianco AJ (1996) Total hip arthroplasty with cement in patients less than twenty years old. Long-term results. J Bone Joint Surg 78A:995–1003

    Google Scholar 

  60. Weiler S, Volkmann R (1994) Das Bicontact-Hüftendo-prothesen-System. Thieme, Stuttgart 1994

    Google Scholar 

  61. Weller S (1997) “Cement or Cementless Fixation” — an individual decision in Total Hip Arthroplasty. International Orthop 11. Implant Special, Springer 1997

    Google Scholar 

  62. Widmer KH, Zurfluh B, Morscher EW (1997) Kontaktfläche und Druckbelastung im Implantat-Knochen-Interface bei Press-Fit Hüftpfannen im Vergleich zum natürlichen Hüftgelenk. Orthopädie 26:181–189

    CAS  Google Scholar 

  63. Willert HG (1996) Clinical relevance of wear particles to osteolysis and loosening of hip endoprostheses. In: Puhl W (ed): Die Keramikpaarung BIOLOX in der Hüftendo-prothetik. Enke, Stuttgart

    Google Scholar 

  64. Winkelmann HP, Gersmann M, Gunselmann M (1996) Die operative Behandlung von hüftgelenksnahen Femur-frakturen beim alten Menschen im Wandel der letzten 20 Jahre. Akt Traumatol 26:73–78

    Google Scholar 

  65. Winkler-Gniewek W, Stallforth H, Ungethüm M (1988) Die Plasmapore-Beschichtung von Gelenkendoprothesen — ein neues Konzept. In: Friedebold G (ed) Oberflächenkonstruierte Prothesen aus technischer und medizinischer Sicht. DMV, Berlin

    Google Scholar 

  66. Winkler-Gniewek W (1989) Die Plasmapore-Beschichtung für die zementlose Verankerung von Gelenkendoprothesen. Aesculap Wissenschaftliche Information im Selbstverlag

    Google Scholar 

  67. Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin

    Google Scholar 

  68. Wroblewski MB (1986) 15-21-year results of the Charnley low-friction arthroplasty. Clin Orthop 211:30–35

    PubMed  Google Scholar 

  69. Wroblewski MB, Siney PD (1993) Charnley low-friction arthroplasty of the hip. Long-term results. Clin Orthop 292:191–201

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Weller, S., Braun, A., Gellrich, J.C., Gross, U. (2000). Importance of Prosthesis Design and Surface Structure for the Primary and Secondary Stability of Uncemented Hip Joint Prostheses. In: Learmonth, I.D. (eds) Interfaces in Total Hip Arthroplasty. Springer, London. https://doi.org/10.1007/978-1-4471-0477-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0477-3_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1150-4

  • Online ISBN: 978-1-4471-0477-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics