Skip to main content

Component Bone Interface in Cementless Hip Arthroplasty

  • Chapter
Interfaces in Total Hip Arthroplasty

Abstract

Cemented total hip replacement is one of the most successful orthopaedic procedures, with reliable relief of pain and restoration of function. Long-term results have improved with modern cementation techniques resulting in the use of total hip arthroplasty in an increasingly young patient population. Despite reported stress survival rates of up to 98% at 20 years in young patients [1] other series report higher implant loosening rates [2–4]. Direct contact between cement and bone can occur but is rare, the usual interface being a fibrohistiocytic membrane described by Fornasier et al. [5] who also describe an inevitable loosening cascade at the cement-bone interface. Other factors implicated in the loosening of cemented prostheses include mechanical degradation of the acrylic bone cement with time [6, 7], impairment of mechanical strength of cement by contaminants [8], compromise of the host tissue by monomer leakage [9], and thermal injury to the bone during polymerisation [10], although this is disputed [11]. In addition, while cement is tolerated in bulk, it is known that particulate cement is ingested by and activates inflammatory cells, thus mediating osteolysis. These observations have stimulated interest in the development of a direct biological bond between prosthesis and bone using cementless fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerboull M. Cemented stems in young patients. In: Challenges in Total Hip Replacement. Smith and Nephew International Hip Conference, Lisbon, 1998; 22-24.

    Google Scholar 

  2. Chandler CN, Reineck FT, Wixson RL, McCarthy JC. Total hip replacement in patients younger than thirty years old. J Bone Joint Surg 1981;63B:1426–1429.

    Google Scholar 

  3. Cornell CN, Ranawat CS. Survivorship analysis of total hip replacements in a series of active patients who are less than fifty years old. J Bone Joint Surg 1986;68A:1430–1434.

    Google Scholar 

  4. Halley DK, Wroblewski BM. Long-term results of low-friction arthroplasty in patients 30 years of age or younger. Clin Orthop 1986;211:43–50.

    PubMed  Google Scholar 

  5. Fornasier V, Wright J, Seligman J. The histomorphologic and morphometric study of asymptomatic hip arthroplasty. Clin Orthop 1991;271:272–282.

    PubMed  Google Scholar 

  6. Gates EI, Harris WH. Comparative fatigue behaviour of different bone cements. Clin Orthop 1984;189:294–299.

    PubMed  CAS  Google Scholar 

  7. Halawa M, Lee A, Ling RSM. The shear strength of trabec-ular bone from the femur and some factors affecting the shear strength of the cement-bone interface. Arch Orthop Trauma Surg 1978;92:19–30.

    Article  PubMed  CAS  Google Scholar 

  8. Gruen TA, Amstutz HC. Effects of laminations and blood entrapment on the strength of acrylic bone cement. Clin Orthop 1976;119:250–255.

    PubMed  Google Scholar 

  9. Linder L. Monomer leakage from polymerising acrylic bone cement. Clin Orthop 1976;119:242–249.

    PubMed  Google Scholar 

  10. Mjoberg B, Petterson H, Rosenqvist R, Rydholm A. Bone cement, thermal injury and the radiolucent zone. Acta Orthop Scand 1984;55:597–600.

    Article  PubMed  CAS  Google Scholar 

  11. Jefferiss CD, Lee AJC, Ling RSM. Thermal aspects of self curing polymethylmethacrylate. J Bone Joint Surg 1975;57B:511–518.

    CAS  Google Scholar 

  12. Cook SD, Walsh KA, Haddad RJ Jr. Interface mechanics and bone ingrowth into porous Co-Cr-Mo alloy implants. Clin Orthop 1985;193:271–280.

    PubMed  CAS  Google Scholar 

  13. Maistrelli GL, Mahomed N, Garbuz D, Fornasier V, Harrington IJ, Binnington A. Hydroxyapatite coating on carbon composite hip implants in dogs. J Bone Joint Surg 1992;74B:452–456.

    Google Scholar 

  14. Walker PS, Onchi K, Kurosawa H, Rodger RF. Approaches to the interface problem in total joint arthroplasty. Clin Orthop 1984;182:99–108.

    PubMed  Google Scholar 

  15. Engh CA, Bobyn VD, Glassman AJ. Porous-coated hip replacement. The factors governing bone-ingrowth, stress shielding and clinical results. J Bone Joint Surg 1987;69B:45–55.

    Google Scholar 

  16. Maistrelli GL, Mahomed N, Fornasier V, Antonelli L, Li Y, Binnington A. Functional osseointegration of HA coated implants. J Arthroplasty 1993;8:549–554.

    Article  PubMed  CAS  Google Scholar 

  17. Schenk RK. Cytodynamics and histodynamics of primary bone repair. In: Lane JM (ed) Fracture healing. New York: Churchill Livingstone, 1987; 23–32.

    Google Scholar 

  18. Rahn BA, Gallinaro P, Baltensperger A, Perren SM. Primary bone healing. An experimental study in the rabbit. J Bone Joint Surg 1971;54:783–786.

    Google Scholar 

  19. Brown CC, McLaughlin RE, Balian G. Intramedullary bone repair and ingrowth into porous coated implants in the adult chicken: a histologie study and biochemical analysis of colla-gens. J Orthop Res 1989;7:316–325.

    Article  PubMed  CAS  Google Scholar 

  20. Perren SM. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop 1979;138:175–196.

    PubMed  Google Scholar 

  21. Bassett CAL, Hermann I. Influence of oxygen concentration and mechanical factors on differentiation of connective tissues in vitro. Nature 1961;190:460–461.

    Article  PubMed  CAS  Google Scholar 

  22. Cameron HU, Pilliar RM, MacNab I. The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res 1973;7:301–311.

    Article  PubMed  CAS  Google Scholar 

  23. Pilliar RM, Lee JM, Maniatopoulos C. Observation on the effect of movement on bone ingrowth into porous surfaced implants. Clin Orthop 1986;208:108–113.

    PubMed  Google Scholar 

  24. Burke DW, O’Connor DA, Zalenski EB, Jasty M, Harris WH. Micromotion of cemented and uncemented femoral components. J Bone Joint Surg 1991;73B:33–37.

    Google Scholar 

  25. Stiehl JB, MacMillan, Skrade DA. Mechanical stability of porous coated acetabular components in total hip arthroplasty. J Arthroplasty 1991;6:295–300.

    Article  PubMed  CAS  Google Scholar 

  26. Jasty M, O’Connor DO, Henshaw RM, Harrigan TP, Harris WH. Fit of the uncemented femoral component and the use of cement influence the strain transfer to the femoral cortex J Orthop Res 1994;12:648–656.

    Article  PubMed  CAS  Google Scholar 

  27. Dorr LD, Faugere MC, Mackel AM, Gruen TA, Bognar G, Malluche HH. Structural and cellular assessment of bone quality of proximal femur. Bone 1993;14:231–242.

    Article  PubMed  CAS  Google Scholar 

  28. Noble PC, Alexander JW, Lindahl LJ, Yew DT, Granberry WM, Tullos HS. The anatomic basis of femoral component design. Clin Orthop 1988;235:148–165.

    PubMed  Google Scholar 

  29. Dorr LD, Arnala I, Faugere MC, Malluche HH. Five-year postoperative results of cemented femoral arthroplasty in patients with systemic bone disease. Clin Orthop 1990;259:114–121.

    PubMed  Google Scholar 

  30. Nakajima I, Dai KR, Kelly PJ, Chao PYS. The effect of age on bone ingrowth into titanium fiber metal segmental prosthesis: an experimental study in a canine model. Orthop Trans 1985;9:296–297.

    Google Scholar 

  31. Rivero DP, Skipor AK, Singh M, Urban RM, Galante JO. Effect of disodium etidronate (EHDP) on bone ingrowth in a porous material. Clin Orthop 1987;215:279–286.

    PubMed  CAS  Google Scholar 

  32. Williams DF. Consensus and definitions in biomaterials. In: De Putter C, de Lange GL, De Groot K, Lee AJC (eds) Advances in biomaterials. Amsterdam: Elsevier, 1988;8:1–16.

    Google Scholar 

  33. Osborn JF, Newsley H. Dynamic aspects of the implant-bone interface. In: Heimke G (ed) Dental implants. Munich: Carl Hanser Verlag, 1980; 111–123.

    Google Scholar 

  34. Crowninshield R. An overview of prosthetic materials for fixation. Clin Orthop 1988;235:166–172.

    PubMed  Google Scholar 

  35. Cohen J, Wulff J. Clinical failure caused by corrosion of a vitallium plate. J Bone Joint Surg 1972;54B:617–628.

    Google Scholar 

  36. Albrektsson T, Branemark P-I, Hansson HA, Lindstrom J. Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone anchorage in man. Acta Orthop Scand 1981;52:155–170.

    Article  PubMed  CAS  Google Scholar 

  37. Keller JC, Lautenschlager EP. Metals and alloys. In: Von Recum AF (ed) Handbook of biomaterials evaluation. Scientific, technical and clinical testing of implant materials. New York: Macmillan, 1986; 3–23.

    Google Scholar 

  38. Morscher EW. Cementless total hip arthroplasty. Clin Orthop 1983;181:76–91.

    PubMed  Google Scholar 

  39. Ring PA. Ring UPM total hip arthroplasty. Clin Orthop 1983;176:115–123.

    PubMed  Google Scholar 

  40. Spector M. Bone ingrowth into porous metals. In: Williams DF (ed) Biocompatibility of orthopaedic implants. Boca Raton FL: CRC Press, 1982; I:89.

    Google Scholar 

  41. Spector M. Bone ingrowth into porous polymers. In: Williams DF (ed) Biocompatibility of orthopaedic implants. Boca Raton FL: CRC Press, 1982; II:55.

    Google Scholar 

  42. Cook SD, Thomas KA, Haddad RJ Jr. Histologie analysis of retrieved human porous coated total joint components. Clin Orthop 1988;234:90–101.

    PubMed  Google Scholar 

  43. Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC. The optimum pore size for the fixation of porous surfaced metal implants. Clin Orthop 1980;150:263–270.

    PubMed  Google Scholar 

  44. Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC, Kent GM. The effect of porous surface configuration on the tensile strength of fixation of implants. Clin Orthop 1980;149:291–298.

    PubMed  Google Scholar 

  45. Agins HJ, Alcock NW, Bensal M et al. Metallic wear in failed titanium — alloy total hip replacement. J Bone Joint Surg 1988;70B1:347–356.

    Google Scholar 

  46. Jacobs JJ, Skipor AK, Black J, Urban RM, Galante JO. Release and examination of metal in patients who have a total hip replacement component made of titanium base alloy. J Bone Joint Surg 1991;73A:1475–1486.

    Google Scholar 

  47. Maistrelli GL. Polymers in orthopaedics. In: Cameron HU (ed) Bone implant interface. St. Louis MO: Mosby,1994; 169–179.

    Google Scholar 

  48. Tullos HS, McCaskill BL, Dickey R, Davidson J. Total hip arthroplasty with a low-modulus porous coated femoral component. J Bone Joint Surg 1984;66A 1:888–898.

    Google Scholar 

  49. Engh CA, O’Connor D, Jasty M, McGovern TF, Bobyn JD, Harris WH. Quantification of implant micromotion, strain shielding and bone résorption with porous coated prosthesis. Clin Orthop 1992;285:13–29.

    PubMed  Google Scholar 

  50. Hubble MJ, Eldridge JD, Smith EJ, Learmonth ID, Harris YM. Patterns of osteolysis in two different cementless total hip arthroplasties. Hip Int 1997;7:65–69.

    Google Scholar 

  51. Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in THA. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg 1992;74A:849–861.

    Google Scholar 

  52. Bobyn JD, Engh CA. Human histology of the bone-porous metal implant interface. Orthopaedics 1984;7:1410–1421.

    Google Scholar 

  53. Schimmel J-W, Huiskes R. Primary fit of the Lord cement-less total hip. A geometric study in cadavers. Acta Orthop Scand 1988;59:638–642.

    Article  PubMed  CAS  Google Scholar 

  54. De Groot K, Geesink RGT, Klein CPAT, Serekian P. Plasma sprayed coatings of hydroxyapatite. J Biomed Mater Res 1987;21:1375–138.

    Article  PubMed  Google Scholar 

  55. Van Blitterswiik CA, Grote JJ, Kuypers W, Daems WT, de Groot K. Macropore tissue ingrowth: a quantitative study on hydroxyapatite ceramic. Biomaterials 1986;7:137–143.

    Article  Google Scholar 

  56. Geesink RGT, De Groot K, Klein CPAT. Bone bonding to apatite coated stems. J Bone Joint Surg 1988;70B:17–22.

    Google Scholar 

  57. Bauer TW, Geesink RC, Zimmerman R, McMahon JT. Hydroxyapatite coated femoral stems. Histological analysis of components retrieved at autopsy. J Bone Joint Surg 1991;73A:1439–1452.

    Google Scholar 

  58. Bauer TW, Stulberg BN, Ming J, Geesink RG. Uncemented acetabular components: histologic analysis of retrieved hydroxyapatite coated and porous implants. J Arthroplasty 1993;8:167–177.

    Article  PubMed  CAS  Google Scholar 

  59. Thomas KA, Kay JF, Cook SD, Jarcho M. The effect of surface macrotexture and hydroxyapatite coating on the mechanical strengths and histological profiles of titanium implant materials. J Biomed Mater Res 1987;21:1395–1414.

    Article  PubMed  CAS  Google Scholar 

  60. Oonishi H, Tsuji E, Ishimaru H, Yamamoto M, Delecrin J. Comparative effects of HAp coated on flat and porous metal surfaces. In: Heimke G (ed) Bioceramics. Cologne: German Ceramic Society, 1990; 286–293.

    Google Scholar 

  61. Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand Suppl 1993;255:1–58.

    PubMed  CAS  Google Scholar 

  62. Geesink RG. Hydroxyapatite-coated total hip prosthesis. Two year clinical and roentgenographic results of 100 cases. Clin Orthop 1990;261:39–58.

    PubMed  Google Scholar 

  63. D’Antonio JA, Capello WN, Jaffe WL. Hydroxyapatite-coated hip implants. Multicenter three-year clinical and roentgenographic results. Clin Orthop 1992;285:102–115.

    PubMed  Google Scholar 

  64. Dorr LD, Wan Z, Seng M, Ranawat A. Bilateral total hip arthroplasty comparing hydroxyapatite coating to porous-coated fixation. J Arthroplasty 1998;13:729–736.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Eldridge, J.D.J., Learmonth, I.D. (2000). Component Bone Interface in Cementless Hip Arthroplasty. In: Learmonth, I.D. (eds) Interfaces in Total Hip Arthroplasty. Springer, London. https://doi.org/10.1007/978-1-4471-0477-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0477-3_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1150-4

  • Online ISBN: 978-1-4471-0477-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics